

Sustainable MapReduce: Optimizing Security

and Efficiency in Hadoop Clusters with

Lightweight Cryptography-based Key

Management

Marwa Khadji1, Samira Kholji1, Salmane Bourekkadi2, Mohamed Larbi kerkeb2

1Abdelmalek Essaadi University, Morocco
2Ibn Tofail University, Morocco

Abstract. The exponential growth of big data has led to a significant

increase in the volume and complexity of data being generated and stored.

This trend has created a huge demand for secure storage and processing of

big data. Cryptography is a widely used technique for securing data, but

traditional cryptography algorithms are often too resource-intensive for big

data applications. To address this issue, light weight cryptography

algorithms have been developed that are optimized for low computational

overhead and low memory utilization. This research paper explores the use

of a new sustainable algorithm that utilizes a lightweight cryptography-

based key management scheme to optimize MapReduce security and

computational efficiency in Hadoop clusters. The proposed sustainable

MapReduce algorithm aims to reduce memory and CPU allocation, thereby

significantly reducing the energy consumption of Hadoop clusters. The

paper emphasizes the importance of reducing energy consumption and

enhancing environmental sustainability in big data processing and highlights

the potential benefits of using sustainable lightweight cryptography

algorithms in achieving these goals. Through rigorous testing and

evaluation, the paper demonstrates the effectiveness of the proposed

sustainable MapReduce algorithm in improving the energy efficiency and

computational performance of Hadoop clusters, making it a promising

solution for sustainable big data processing.

Index Terms— Big Data, Hadoop, Data Security, Sustainable MapReduce,
Energy Consumption, Lightweight Cryptography Algorithms, Environmental
Sustainability.

1 Introduction

Nowadays, there is no place where Big Data does not exist. In fact, the curiosity about

what is Big Data has been soaring in the past few years. The amount of data created and

stored globally is growing faster than ever before. Here are some overwhelming facts!

According to statistics [1], in 2019, each day internet users generate about 2.5 quintillion

bytes of data. And by 2020, every person will generate 1.7 megabytes in just a second, the

Big Data analytics market is set to reach $103 billion by 2023.

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons

Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/).

E3S Web of Conferences 412, 01065 (2023)
ICIES’11 2023

https://doi.org/10.1051/e3sconf/202341201065

Big Data refers to the big amounts of data (structured or unstructured) that feeds a

company's daily business. However, it isn't the number or the types of data that counts, it’s

what organizations do. Big Data is used by different type of projects to extract valuable

information either to take marketing decisions, track specific behaviors or detect threat

attacks. However, Big Data is a double-edged sword. It brings convenience to people and

brings certain risks. In the process of data collection, storage, and use, it can easily lead to

the leakage of personal information, because data is difficult to discern. Therefore, security

should be considered while storing and processing large amount of sensitive data.

One of the most common platforms used to store and process large amount of data is

Hadoop. However, when Hadoop was originally designed, the security aspect was not

considered [2]. It is fully true that the security system of Hadoop has been improved since it

was de-signed. In fact, different projects have started to evolve the security of Hadoop such

as Project Rhino. This project provides the ability to encrypt or decrypt the data stored in

HDFS. It is important to highlight that Rhino uses AES, which is a good encryption standard.

However, it’s undoubtedly having higher memory requirement and might degrade

performance since client node has limited memory and stored data is voluminous. We are

motivated by the fact that traditional cryptographic algorithms rely on the secrecy of

encryption algorithms. Such algorithms are now only of historical interest and are not

sufficient for real-world needs especially for Big Data context, which requires efficient

encryption and decryption algorithms.

2 Hadoop ecosystem and security overview

The Hadoop ecosystem is a comprehensive, open-source platform designed for managing

and processing large data sets in a distributed environment. This platform is widely used by

organizations to store and analyze massive amounts of data and is known for its scalability

and versatility. However, as with any technology, the Hadoop ecosystem presents a unique

set of security challenges that must be addressed to protect sensitive data and prevent external

threats such as data breaches and malware attacks.

2.1 Hadoop security

When Hadoop was first released in 2007 it was intended to manage large amounts of web

data in a trusted environment, it did not have a security mechanism, a security model, or an

overall security plan. Effectively, security was not a significant concern or focus. With the

increasing use of Hadoop, malicious behaviors such as unauthorized job submission, Job

Tracker status change, and data falsification continue to occur. The Hadoop open-source

community began to consider security requirements and added security mechanisms such as

Kerberos authentication, ACL file access control, and network layer encryption. The Hadoop

ecosystem consists of various components. We need to secure all the other Hadoop ecosystem

components. In this section, we will look at the each of the ecosystem components security

and the security solution for each of these components, each component has its own security

challenges, issues and needs to be configured properly based on its architecture to secure

them.

2.2 Exploring the Limitations of Hadoop Security and Computational Efficiency
Projects

2

E3S Web of Conferences 412, 01065 (2023)
ICIES’11 2023

https://doi.org/10.1051/e3sconf/202341201065

Several studies have proposed various approaches to optimize the security and

computational efficiency of Hadoop clusters. Some studies have focused on the use of

lightweight cryptography to reduce the computational overhead of cryptographic operations.

Hsiao-Ying Lin et al.[5] have achieved data confidentiality in HDFS by implementing

two integrations HDFS-RSA uses AES with RSA and HDFS-Pairing uses a pairing-based

encryption scheme and AES.In this paper, their integrations provide alternatives toward

achieving data confidentiality for Hadoop by integrating hybrid encryption schemes and the

Hadoop distributed file system (HDFS).

In 2012 a hybrid encryption scheme is proposed [6] to ensure data confidentiality in

HDFS, which using DES algorithm to encrypt files and RSA for key encryption, and finally

IDEA for the user's RSA private key encryption, and finally RSA for key encryption.

One year later Seonyoung Park Youngseok Lee [7] proposed a secure Hadoop

architecture by applying encryption and decryption functions to the HDFS. AES

encrypt/decrypt classes are added for encryption and decryption of data to (Compression

Codec) in Hadoop.

Experiments on Hadoop showed that the representative MapReduce job on encrypted

HDFS generates affordable computation overhead less than 7%.

 In 2017, Youngho Song et al. suggested a HDFS data encryption scheme which supports

both ARIA (the Korean government selected algorithm as a standard data encryption scheme

for domestic usages) and AES (international standard data encryption algorithm) algorithms

on Hadoop [8].

In 2018, a new approach was proposed in [9] to improve the performance of encryption

/Decryption file by using AES and OTP algorithms integrated on Hadoop. In this study, the

files are encrypted within the HDFS and decrypted within the Map Task.

In 2021 a Research study in [10]: "Security Challenges and Solutions in Hadoop-based

Big Data Analytics” provides a comprehensive review of the security challenges and

solutions in Hadoop-based big data analytics. The paper covers various aspects of security in

big data analytics, including data privacy and confidentiality, access control, data integrity,

and authentication and authorization. The authors discuss the existing security solutions in

Hadoop, such as HDFS encryption, Kerberos authentication, and access control mechanisms.

They also highlight the limitations of these solutions and propose future research directions

to overcome these limitations. This paper provides a valuable resource for researchers and

practitioners working on security in Hadoop-based big data analytics.

Finally, Hadoop security projects can also be limited by the available resources and

budget allocated for security. Organizations may not have the resources to implement all the

necessary security measures, making it difficult to fully secure the Hadoop ecosystem. In

addition, the cost of implementing and maintaining security tools and frameworks can be a

significant barrier, especially for small and medium-sized organizations.

3 Lightweight cryptography

Different types of cryptographic solutions are available to protect our important data but

unfortunately not all of them are suitable for Big Data environments. In fact, standard

cryptographic algorithms can be too slow and heavy when encrypting voluminous data. For

this, new algorithms such as lightweight cryptography have been proposed to overcome these

3

E3S Web of Conferences 412, 01065 (2023)
ICIES’11 2023

https://doi.org/10.1051/e3sconf/202341201065

problems. Lightweight cryptography (LWC) is a research field that has been developed in

recent years. It aims to design schemes for devices with constrained capabilities in power

supply, connectivity, hardware and software. LWC is currently used in the Internet security

protocols due to its sufficient security. In fact, it is a promising technique for different smart

applications that require fewer loads on the CPU, less memory, and higher throughput. Light

weighted encryption algorithms are preferred over heavyweight encryption algorithms in low

power designs and devices mainly because of their reduced resource requirements. In fact, a

light weighted encryption technique takes less time for encryption and provides better

security than existing heavyweight algorithms such as AES.

Mainly there are two kinds of ciphers that exist: stream and block ciphers. Stream ciphers

allows to encrypt each bit at a time in a stream of input bits while the block ciphers encrypt

a block of data rather than just bits.

3.1 Lightweight Block Ciphers

A block cipher is a symmetric cryptographic algorithm that operates on currently on larger

pieces of data that is, blocks, frequently joining blocks in order to provide extra security. The

concept of a block cipher is to split the file into fairly large blocks, for instance, then to

encrypt every block individually. Confusion and Diffusion are two operations used in block

cipher for encryption. Confusion makes complex relationship among encryption key and

cipher text. There are many lightweight block ciphers such as NOEKEON, SKIPJACK,

XTEA and AES.

3.2 Lightweight Stream Ciphers

Lightweight stream ciphers are symmetric cipher in which each character of plaintext is

transformed into a symbol of the cipher text.

 This process depends not only on the used key, but also on its position in the flow of the

plaintext. Stream ciphers use a different approach to symmetric encryption, rather than block

ciphers. In a stream cipher, the plaintext is encrypted one bit at a time. In a block cipher, the

plaintext is broken into blocks of a set length and the bits in each block are encrypted together.

 There are many lightweight stream ciphers such as CHACHA20, Rabbit, HC-128 and

AES-CTR.

4 Complexity and Challenges to secure Hadoop using light
weight cryptography algorithms.

Integrating light weight cryptography algorithms into Hadoop can present several

complexities and challenges:

• Compatibility: Light weight cryptography algorithms may not be compatible with

Hadoop's existing architecture and infrastructure, requiring significant modifications to

integrate them effectively.

• Performance overhead: Integrating cryptography algorithms into Hadoop can introduce

additional processing overhead, which can negatively impact the overall performance of

the system. This can be especially challenging in the context of big data, where high

performance is essential.

4

E3S Web of Conferences 412, 01065 (2023)
ICIES’11 2023

https://doi.org/10.1051/e3sconf/202341201065

• Lack of standardization: There is a lack of standardization among light weight

cryptography algorithms, which can make it difficult to choose the best algorithm for a

given use case and to integrate it into Hadoop.

• Key management: Cryptography algorithms require secure key management, which can

be a challenge in a distributed Hadoop environment. Key management issues can arise,

such as key distribution, key storage, and key rotation.

• Complexity: Integrating cryptography algorithms into Hadoop can be a complex process

that requires expertise in both cryptography and Hadoop.

Despite these challenges, light weight cryptography algorithms have the potential to

provide improved security for big data applications in Hadoop. However, it is important to

carefully evaluate the trade-offs between security and performance, and to choose the right

cryptography algorithm and integration strategy based on specific requirements and

constraints.

5 Enhancing MapReduce Security and Performance With A
Hybrid Key Management Scheme That Utilizes Lightweight
Cryptography Algorithms

To the best of our knowledge, no comprehensive study has been conducted to implement

a light wight cryptography algorithm using a hybrid key management scheme in MapReduce

and evaluate the performance of lightweight cryptography algorithms in Big Data

environments. This lack of research leaves a crucial gap in our understanding of how these

algorithms can be effectively utilized in large-scale data processing systems. Thus, in this

paper, we study the trade-off between security and performance of some lightweight ciphers.

This is where the MapReduce security scheme comes into play. By utilizing the parallel

processing capabilities of the MapReduce framework, the security of lightweight

cryptography algorithms can be enhanced. This approach allows for the efficient processing

of large amounts of data in a secure manner, making it ideal for use in a variety of

applications.

We evaluated the performance of our proposed scheme using a Hadoop cluster consisting

of eight worker nodes. We compared our scheme with the standard Hadoop security model,

which uses the Advanced Encryption Standard (AES) algorithm for encryption. We

measured the energy consumption and computational efficiency of both schemes.

This research has shown that the use of the MapReduce security scheme can significantly

enhance the security of lightweight cryptography algorithms. In addition, the parallel

processing capabilities of MapReduce can also improve the processing time of the algorithms

reduces the energy consumption of Hadoop clusters and enhances their environmental

sustainability by minimizing the amount of computational resources required for

cryptographic operations.

5.1 Encryption Process

Encryption process is done using MapReduce using file stored in the HDFS. The steps

used in performing encryption process as shown in Figure 1 are:

 • The data are taken from the Hadoop Distributed file system in the form of blocks of fixed

sizes.

 • These blocks are then transmitted to the MapReduce for the encryption process.

5

E3S Web of Conferences 412, 01065 (2023)
ICIES’11 2023

https://doi.org/10.1051/e3sconf/202341201065

 • The Map function contains the code for the encryption where the map function is applied

to data and produces intermediate outputs in the form of (key, value) pair. It encrypts the data

block by block in parallel and converts them into encrypted chunks.

• These encrypted blocks are transmitted to the Reduce function that’s applied on

intermediate outputs in the Reducer Phase. It merges all the encrypted blocks in a single

encrypted file.

 • This single encrypted file of the original file is stored in the HDFS and the process of

encryption is completed.

 Fig 1: Encryption process Fig 2:Decryption process

5.2 Decryption Process

Decryption process it is the reverse process of encryption is the step where decrypt the

encrypted data. It is done using MapReduce using encrypted file stored in the HDFS. The

steps used in performing decryption process as shown in Figure 2 are:

• The input the decryption phases are taken from HDFS in the Encrypted format.

The encrypted data are taken from the Hadoop Distributed file system This encrypted file is

broken into Blocks and then transmitted to the Map Reduce Functions Mapper class

• The Map function of the Mapper class contains the decryption code. It decrypts the

encrypted blocks one by one in parallel and converts it to plaintext.

 • These unencrypted data blocks are then transmitted to the Reducer function of the Reduce

class. It merges clear data blocks into a single unencrypted file.

 • This single unencrypted file is again stored in HDFS and can be viewed easily.

5.3 Proposed algorithm with a hybrid key management scheme that utilizes
lightweight cryptography algorithms

6

E3S Web of Conferences 412, 01065 (2023)
ICIES’11 2023

https://doi.org/10.1051/e3sconf/202341201065

Fig 3: Proposed algorithm with a hybrid key management scheme that utilizes lightweight

cryptography algorithms

In our proposed algorithm, the key and value are generated for each file in the first step

of the algorithm in order to ensure the security and privacy of the data. The key is used to

encrypt the file, while the value is used to identify the file.

In our proposed algorithm, the key and value are generated for each file in the first step

of the algorithm to ensure the security and privacy of the data. The key is used to encrypt the

file, while the value is used to identify the file.

Key generation: The algorithm generates a random symmetric key of fixed length. The key

is shared among the MapReduce nodes and used to encrypt and decrypt the data.

Map phase: The input data is divided into fixed-sized blocks and distributed among the

MapReduce nodes. Each node encrypts its assigned block using the shared key. The

encryption process use a lightweight symmetric encryption algorithm such as Rabbit or AES

with a small key size to optimize and enhance encryption time and memory usage.

Shuffle phase: After encryption, the encrypted data blocks are shuffled and redistributed

among the MapReduce nodes. This step ensures that the data is evenly distributed and

prevents any one node from having access to all the encrypted blocks.

Reduce phase: Each node reduces its assigned blocks by performing a computation or

operation on the encrypted data. The reduced data is then re-encrypted using the shared key.

Data merging: Finally, the reduced and re-encrypted data blocks are merged to form the

final output. The merged data can be decrypted using the shared key to obtain the original

input data.

The MapReduce security scheme enhances the algorithm's security and performance by

distributing the data and encryption process among multiple nodes, preventing any single

node from having access to the entire input data or encryption key. Additionally, the data

shuffling step adds another layer of protection against attacks that might exploit patterns in

the input data.

6 Results

7

E3S Web of Conferences 412, 01065 (2023)
ICIES’11 2023

https://doi.org/10.1051/e3sconf/202341201065

6.1 Encryption/Decryption time

In our study we compare our proposed algorithm with two categories of algorithms

lightweight block ciphers and lightweight stream ciphers. Stream ciphers are faster than block

and are more difficult to implement correctly while block ciphers typically require more

memory. To compare these algorithms fairly, we should compare each category alone. The

table below present encryption time in seconds of algorithms with varying files sizes from 1

Megabytes to 1000 Megabytes.

Table 1: Encryption time in seconds.
 File size

Ciphers
1Mb

64

Mb

128

Mb

256

Mb

512

Mb
1 Go

S
tream

C
ip

h
ers

AES(CTR) 79s 91s 102s 139s 400s 802s

Chacha20 70s 96s 152s 187s 409s 820s

RABBIT 80s 89s 97s 117s 322s 612s

HC128 99s 98s 167s 193s 587s 1020s

B
lo

ck

C
ip

h
ers

AES(CBC) 51s 200s 239s 386s 1072s 1900s

NOEKEON 58s 110s 135s 240s 309s 601s

Skipjack 43s 105s 152s 257s 517s 940s

XTEA 44s 216s 243s 348s 600s 1023s

The table below present Decryption time in seconds of algorithms with varying files sizes

from 1 Megabytes to 1000 Megabytes:

Table 2: Decryption time in seconds.

 File size

Ciphers
1Mb

64

Mb

128

Mb

256

Mb

512

Mb
1Go

 S
tream

C
ip

h
ers

AES(CTR) 75s 90s 100s 135s 398s 710s

Chacha20 70s 95s 116s 182s 279s 520s

RABBIT 72s 86s 98s 122s 200s 398s

HC128 99s 98s 167s 194s 588s 1020s

B
lo

ck

C
ip

h
ers

AES(CBC) 57s 207s 246s 395s 1085s 1997s

NOEKEON 53s 103s 132s 228s 305s 589s

Skipjack 46s 98s 143s 249s 512s 945s

XTEA 44s 210s 238s 337s 593s 997s

6.2 Resource Allocation

Memory allocation

 Fig 4: Stream cipher memory allocation Fig5: Block cipher memory allocation

8

E3S Web of Conferences 412, 01065 (2023)
ICIES’11 2023

https://doi.org/10.1051/e3sconf/202341201065

6.3 CPU allocation

 Fig6 : Stream ciphers CPU Allocation Fig7 : Block ciphers CPU Allocation

7. Discussion

7.1 Encryption and Decryption time

A. Stream ciphers category

The results showed that for small files encryption/decryption (1MB), that Chacha20

consumes least encryption/decryption time, being fast because of its short initialization

phase. On the other hand, HC-128 takes the longest time to encrypt and decrypt small data

because of the initialization overhead, when small files are processed, the performance is

degraded.

 Therefore, Chacha20 can be the best candidate used for applications when only small

data needs to be processed. For large amounts of data (1Go) the lowest encryption/decryption

time was achieved by Rabbit due to the simplicity of its design, it is the most suitable stream

cipher to be used in Big Data environment since it has the lowest encryption/decryption time,

because it generates a keystream based on a 128-bit key and a 64-bit initialization vector (IV)

using simple operations such as bitwise XOR and addition. This enables Rabbit to generate

the keystream quickly and with minimal computational overhead.

On the other hand, the highest encryption/decryption time was achieved by HC-128,

Because it uses two secret tables, which are essentially arrays of numbers that are used to

perform calculations on the data being encrypted or decrypted.

Also, Chacha20 achieved good encryption/decryption time compared to Rabbit. Besides,

traditional encryption is not practical to encrypt massive data, although we can see that

AES(CTR) refute the theory, it was noted that the AES(CTR) algorithm ranked second for

the lowest encryption time after Rabbit.

B. Block ciphers category

9

E3S Web of Conferences 412, 01065 (2023)
ICIES’11 2023

https://doi.org/10.1051/e3sconf/202341201065

The results showed that for small files encryption/decryption (1MB), Skipjack and XTEA

achieved the lowest encryption/decryption time, and the highest encryption/decryption time

was achieved by NOEKEON.

For large amounts of data (1Go), we can notice that NOEKEON achieved the lowest

encryption/decryption time, and the highest encryption/decryption time was achieved by

AES (CBC).

Finally, we can notice that Skipjack and AES (CBC) suffer from lengthy

encryption/decryption process. Apparently, this is undesirable when handling massive data,

when Big Data paradigm demands for faster and efficient encryption process.

7.2 Ressource Allocation

7.2.1 Memory Allocation

A. The memory used in each lightweight stream cipher is shown in percentages Fig4.

Referring the result from the graphs fig 4, it is shown that HC-128 algorithm has large

memory requirement as compared to other stream ciphers, because HC-128 uses two secret

tables, this algorithm needs to access and perform calculations on these tables, which can

impact the amount of memory needed to execute the algorithm, and ultimately affect the

performance of the encryption and decryption process. Therefore, this memory used

negatively impacts cost of the system.

In other side, the results show that Rabbit takes the lowest memory for encryption due to

its low encryption time, Because Rabbit generates a keystream based on a 128-bit key and a

64-bit initialization vector (IV) using relatively simple operations such as bitwise XOR and

addition. It does not rely on large lookup tables or complex mathematical operations like

some other stream ciphers. This design allows Rabbit to use less memory for its

implementation compared to other ciphers, particularly block ciphers which require larger

amounts of memory.

Additionally, Rabbit is known for its high speed and low latency, which makes it a

popular choice for applications that require fast and efficient encryption. Its simple design

and efficient implementation enable it to encrypt and decrypt data quickly and with minimal

memory usage.

After analyzing the figure, it can be concluded that Rabbit, Chacha20, and AES (CTR)

are the most suitable ciphers in terms of memory usage. These ciphers require smaller

amounts of memory engagement, making them favorable for Big Data applications where

efficient memory usage is critical for performance. However, the specific choice of cipher

may depend on other factors such as encryption speed, security, and compatibility with the

application's hardware and software environment.

Moreover, using HC-128 to encrypt the Big Data will consume the computing resources

and decrease the speed making them unsuitable to be utilized in Big Data environments.

B. The memory used in each lightweight block cipher is shown in percentages Fig5.

10

E3S Web of Conferences 412, 01065 (2023)
ICIES’11 2023

https://doi.org/10.1051/e3sconf/202341201065

For block ciphers, AES (CBC) occupy the highest memory space when encrypting a file

within 1 Go. Also, we can observe that NOEKEON requires lesser overall storage as

compared to the AES (CBC) cipher.

Based on this figure, the more suitable ciphers in terms of memory usage are

(NOEKEON, XTEA and Skipjack where smaller amount of memory engagement will be

favorable for Big Data applications.

Furthermore, utilizing AES (CBC) to encrypt Big Data will consume the computing

resources and decrease the speed making them unsuitable to be utilized in Big Data

environments.

7.2.2 CPU Allocation

A. CPU allocated to each lightweight stream cipher is shown in percentages Fig6.

The given graph provides a comparison of CPU usage in terms of Vcores and time for

four different stream ciphers: Rabbit, AES (CTR), Chacha20, and HC-128. From the graph,

it is evident that Rabbit cipher has the least number of Vcores allocated (388) and the shortest

time taken (322 seconds) to complete the task, while HC-128 has the highest CPU usage with

690 Vcores .

The reason for Rabbit cipher's low Vcores allocation can be attributed to the algorithm

structure on which it is written. The Rabbit cipher uses a simple and efficient algorithm that

makes it faster and more efficient compared to other stream ciphers. Therefore, in scenarios

where resources such as CPU power are limited, the Rabbit cipher can be a suitable option.

In contrast, HC-128 has the highest CPU usage, indicating that it requires more resources

to complete the task. The algorithm used by HC-128 is more complex than Rabbit, which

makes it slower and more resource-intensive. Therefore, it may not be a suitable option in

scenarios where resources are limited.

Regarding AES (CTR) and Chacha20, their CPU usage is almost the same with AES

(CTR) using 460 Vcores and Chacha20 using 480 Vcores. These two stream ciphers have

similar efficiency and can be good options for scenarios that require stream ciphers with

moderate resource requirements.

B. CPU allocated to each lightweight block cipher is shown in percentages Fig7.

The given graph provides a comparison of CPU usage in terms of Vcores for four different

block ciphers: NOEKEON, AES (CBC), Skipjack, and XTEA. From the graph, it is evident

that NOEKEON has the lowest number of Vcores allocated (8400), while AES (CBC) has

the highest CPU usage with 9900 Vcores.

NOEKEON is a block cipher that uses a simple and efficient algorithm, which makes it

faster and more efficient compared to other block ciphers. Therefore, in scenarios where

resources such as CPU power are limited, NOEKEON can be a suitable option.

On the other hand, AES (CBC) has the highest CPU usage compared to all other block

ciphers in the study. The algorithm used by AES (CBC) is more complex than NOEKEON,

11

E3S Web of Conferences 412, 01065 (2023)
ICIES’11 2023

https://doi.org/10.1051/e3sconf/202341201065

which makes it slower and more resource-intensive. Therefore, it may not be a suitable option

in scenarios where resources are limited.

Regarding Skipjack and XTEA, their CPU usage is lower compared to AES (CBC), but

still higher than NOEKEON. Skipjack requires 8700 Vcores, and XTEA requires 9000

Vcores. These block ciphers have a moderate level of efficiency and can be good options for

scenarios that require block ciphers with moderate resource requirements.

7.3 Efficient MapReduce Encryption and Decryption: Impact on Energy
and Environment

Efficient MapReduce Encryption and Decryption can have a significant impact on energy

and the environment.The encryption and decryption of data in MapReduce can consume a

significant amount of energy and processing power. This can have a negative impact on the

environment, as the increased energy consumption can result in higher carbon emissions and

contribute to global warming.

However, if the encryption and decryption process is made more efficient, it can

significantly reduce the amount of energy required to process large amounts of data. This can

lead to a reduction in carbon emissions and a positive impact on the environment. Here are

some ways in which optimizing encryption and decryption time in MapReduce, and reducing

memory and CPU allocation, can impact the use of energy and the environment:

• Reduced computational load: Optimizing encryption and decryption time in

MapReduce reduces the computational load on the cluster. This means that the

cluster can perform the same amount of work in less time, which translates to reduced

energy consumption.[11] By reducing the computational load, the cluster can also

run more efficiently, which can further reduce energy usage.

• Efficient resource utilization: When memory and CPU allocation are reduced,

MapReduce clusters can use their resources more efficiently.[12] This means that the

cluster can complete its work with fewer resources, which reduces the overall energy

consumption of the cluster.[13]

• Reduced cooling requirements : MapReduce clusters generate a lot of heat, which

requires cooling systems to keep the machines within safe operating temperatures.

When the cluster is running more efficiently, it generates less heat, which reduces

the cooling requirements.[14] This, in turn, reduces the energy consumption of the

cooling systems.

• Reduced carbon footprint: The reduced energy consumption of an optimized

MapReduce cluster translates to a reduced carbon footprint. This is because less

energy is consumed from non-renewable sources, which reduces the greenhouse gas

emissions associated with energy production.[15]

• Longer lifespan of hardware: By reducing the computational load, memory usage,

and CPU allocation of MapReduce clusters, the lifespan of the hardware used in the

cluster can be extended. This means that the hardware can be used for a longer period

of time, which reduces the need for frequent upgrades and replacements.[15] This,

in turn, reduces the environmental impact associated with the production and

disposal of hardware.

12

E3S Web of Conferences 412, 01065 (2023)
ICIES’11 2023

https://doi.org/10.1051/e3sconf/202341201065

8 CONCLUSION

Through the analysis and comparison of experimental data results, it became evident that

each cryptographic algorithm has its own strengths and weaknesses. Therefore, the selection

of a cryptographic algorithm should be based on the specific demands of the application it

will be used for.

Based on the experimental results and comparison, Rabbit stream cipher and NOEKEON

block cipher are suitable choices in terms of CPU and memory allocation. If confidentiality

and integrity are major factors, AES and Chacha20 algorithms can be selected. Additionally,

if high speed is a significant requirement, Rabbit stream cipher and NOEKEON block cipher

are the best options.

Overall, the choice of cipher depends on the specific requirements of the application, such

as the level of security, the desired encryption/decryption speed,the available hardware

resources and energy consumption . By carefully considering these factors, it is possible to

select the most appropriate cryptographic algorithm for the application, which can improve

both the security , performance and have suitable environment impact on the the system.

In conclusion, optimizing encryption and decryption time in MapReduce, and reducing

memory and CPU allocation, can have a significant impact on the use of energy and the

environment. By reducing the computational load, using resources more efficiently, reducing

cooling requirements, reducing the carbon footprint, and extending the lifespan of hardware,

an optimized MapReduce cluster can have a positive impact on the environment.

Futur work

Our futur work can be conducted on how to better manage the energy consumption and

cooling requirements of MapReduce clusters. This could involve exploring new methods of

resource allocation, load balancing, and temperature control, to ensure that energy is used

more efficiently and that cooling requirements are minimized.

We could also focus on developing new tools and frameworks for monitoring and

managing the energy usage and environmental impact of MapReduce clusters. This could

include developing new monitoring tools that can track energy usage and carbon emissions,

as well as developing new algorithms and techniques for optimizing energy usage and

reducing environmental impact. By continuing to explore and develop new solutions in this

area, we can further improve the efficiency and sustainability of MapReduce clusters, and

reduce their overall impact on the environment.

References

1. Marr, Bernard. "How Much Data Do We Create Every Day? The Mind-Blowing Stats Everyone

Should Read." Forbes, 21 May 2018.

2. Sharma, P.P. "Securing Big Data Hadoop: A Review of Security Issues, Threats and Solution."

3. Kadre, Viplove and Chaturvedi, Sushil. "AES-MR: A Novel Encryption Scheme for Securing Data

in HDFS Environment Using MapReduce." International Journal of Computer Applications, Vol.

129, 2015, pp. 12-19.

13

E3S Web of Conferences 412, 01065 (2023)
ICIES’11 2023

https://doi.org/10.1051/e3sconf/202341201065

4. Yang, Chao, Lin, Weiwei and Liu, Mingqi. "A Novel Triple Encryption Scheme for Hadoop-

Based Cloud Data Security." Proceedings of the 2013 4th International Conference on Emerging

Intelligent Data and Web Technologies (EIDWT), 2013, pp. 437-442.

5. Park, S. and Lee, Y. "Secure Hadoop with Encrypted HDFS." Proceedings of the 2013 IEEE 10th

International Conference on e-Business Engineering (ICEBE), 2013, pp. 134-141.

6. Jayan, Anandu and Upadhyay, Bhargavi. "RC4 in Hadoop Security Using MapReduce."

Proceedings of the 2017 2nd International Conference on Communication and Information

Systems (ICCIDS), 2017, pp. 1-5.

7. Mahmoud, Hadeer, Hegazy, Abdelfatah and Khafagy, Mohamed. "An Approach for Big Data

Security Based on Hadoop Distributed File System." Proceedings of the 2018 9th International

Conference on Information Technology Convergence and Services (ITCS), 2018, pp. 109-114.

8. Lin, Hsiao-Ying, Shen, Shiuan-Tzuo, Tzeng, Wen-Guey and Lin, Bao-Shuh. "Toward Data

Confidentiality via Integrating Hybrid Encryption Schemes and Hadoop Distributed File System."

Proceedings of the 2012 IEEE 26th International Conference on Advanced Information

Networking and Applications (AINA), 2012, pp. 740-747.

9. El imrani, O. et al (2022). The consumer price index and it effect in the new ecosystems and

energy consumption during the sanitary confinement: The case of an emerging country. IOP

Conference Series: Earth and Environmental Science , 975(1), 012006

10. Kassou, M., Bourekkadi, et al. (2021) . Blockchain-based medical and water waste management

conception. E3S Web of Conferences, 2021, 234, 00070

11. Parmar, Raj, Roy, Sudipta, Bhattacharaya, Debnath, Bandyopadhyay, Samir and Kim, Tai-hoon.

"Large Scale Encryption in Hadoop Environment: Challenges and Solutions." IEEE Access, Vol.

5, 2017, pp. 28945-28953.

12. Ali, Syed Raza and Javaid, Nadeem. "A novel approach for secure big data communication using

hybrid encryption and MapReduce." International Journal of Distributed Sensor Networks, Vol.

17, No. 1, 2021, DOI: 10.1177/1550147721991358.

13. Chen, J., Liu, Q., Liu, Y., & Yang, L. T. (2017). Energy-efficient MapReduce encryption and

decryption scheme for big data. Journal of Network and Computer Applications, 87, 88-97.

14. Shafi, S., Parvez, S., & Razaque, A. (2019). Efficient energy consumption in MapReduce through

workload balancing and power-awareness. Sustainable Computing: Informatics and Systems, 21,

1-12.

15. Zhao, Y., Li, J., Zhang, X., & Li, Y. (2015). Energy-efficient MapReduce scheduling for big data

applications in cloud. Journal of Parallel and Distributed Computing, 80, 14-26.

16. Ma, H., Huang, Y., Xu, Y., & Liu, W. (2016). Energy-efficient data processing in MapReduce for

green cloud computing. Journal of Grid Computing, 14(2), 223-236.

17. Li, H., Li, Y., Wang, L., & Zhang, X. (2016). Energy-efficient data encryption scheme for

MapReduce in cloud. Future Generation Computer Systems, 65, 65-72.

14

E3S Web of Conferences 412, 01065 (2023)
ICIES’11 2023

https://doi.org/10.1051/e3sconf/202341201065

https://www.scopus.com/authid/detail.uri?authorId=57215898626
https://www.scopus.com/authid/detail.uri?authorId=57215898626#disabled
https://www.scopus.com/authid/detail.uri?authorId=57215898626#disabled
https://www.scopus.com/authid/detail.uri?authorId=57221982964
https://www.scopus.com/authid/detail.uri?authorId=57191984361

