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Abstract: With the progress of time series prediction, several recent developments in machine learning 

have shown that the integration of prediction methods into portfolio selection is a great opportunity to 

structure investment decisions in the renewable energy industry. In this paper, we propose a novel 

approach to portfolio formation strategy based on a hybrid machine learning model that combines a 

convolutional neural network (CNN) and long-term bidirectional memory (BiLSTM) with robust input 

characteristics obtained from Huber's location for stock prediction and the mean-variance (MV) 

Markowitz model for optimal portfolio construction. Specifically, this study first applies a prediction 

method for stock pre-selection to ensure high-quality stock inflows for portfolio formation. Then, the 

predicted results are integrated into the MV model. To comprehensively demonstrate the superiority of the 

proposed model, we used two portfolio models, the MV model and the equal-weighted (1/N) portfolio 

model, with LSTM, BiLSTM and CNN-BiLSTM, and used them as references. Between January 2016 and 

December 2021, historical data from the Stock Exchange of Thailand 50 Index (SET50) was collected for 

the study. Experience shows that integrating stock pre-selection can improve VM performance, and the 

results of the proposed method show that they outperform comparison models in terms of Sharpe ratio, 

average return and risk. 

Keywords : portfolio optimization; mean-variance model; inventory forecasting; stock selection; machine 
learning; convolutional neural network; short-term long memory. 

1 Introduction 

In recent years, there has been a reluctance on the part of investors to invest in renewable energy technologies. 

Therefore, the most important prerequisite for assessing investment risks and creating a better situation to attract the 

tendency of investors to invest in this area is the optimization of portfolio selection to structure investment decisions in 

this area. 

Portfolio optimization is one of the most interesting issues, the MV model relies on historical data to generate the 

optimal portfolio and can only display the optimal portfolio as far as data entry is concerned. Therefore, a number of 

researchers have applied machine learning to predict return and volatility in the future (Henrique et al. 2019). Investors 

in the financial market need to evaluate a variety of factors and perspectives to maximize their investment income 

(Rahiminezhad Galankashi et al. 2020). In this regard, including stock price prediction methods in portfolio 

optimization would be beneficial and cost-effective for investors (Kolm et al. 2014). Financial time series forecasting 

has long been a challenging area of study, as financial market fluctuations are inherently volatile, complex and dynamic 

(Paiva et al. 2019). However, several related studies claim that there is a pattern of asset price movement in financial 

time series data and that this pattern can be used to predict financial time series data to some extent (Wan et al. 2020; 

Wang et al. 2020). 
Portfolio management is an analytical process of selecting and allocating a group of investment assets in which the 

allocated portion of the investment is constantly modified to optimize expected return and risk tolerance (Markowitz 

1952). Markowitz's mean variance (MV) model, first developed in 1952, is the foundation of portfolio theory, which is 

widely used and recognized in portfolio management (Sharpe and Markowitz 1989). 

However, based on the classical MV model, there are two main problems of practical application. The first is that 

the MV relies on the expected return and risk of asset inflows to produce optimal portfolios for each level of expected 

return and risk (Beheshti et al) to put into the optimization process, the MV model can achieve improved returns (Mitra 

Thakur et al 2018). Another problem is that many high-risk assets often return a large number of small-scale weightings 

into the optimal portfolio, making them difficult to implement, especially for individual investors (Ben Salah et al. 2018; 

Ortiz et al. 2021; Huang et al. 2021). 
The main objective of this study is to develop a portfolio formation approach for individual investors in which a 

hybrid machine learning model that combines a convolutional neural network and bidirectional short-term memory with 

robust input characteristics (R-CNN-BiLSTM) is applied to predict future closing stock prices before using the MV 

model to build the optimal portfolio. In this regard, this study proposes a new approach to portfolio formation that 

combines R-CNN-BiLSTM and MV (R-CNN-BiLSTM+MV1). The article is organized as follows. In Section 2, 

reviews of some existing studies are discussed regarding inventory forecasting and portfolio optimization, as well as 

empirical work that uses traditional statistics and machine learning methods to solve problems related to inventory 

forecasting and selection. Section 3 briefly explains the underlying knowledge used in this study. Section 4 presents the 
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detailed experimental process. Section 5 reports the experimental results. Finally, Section 6 discusses the main findings 

of the work, theoretical implementations, and limitations. 

2 Basic knowledge 

2.1 Mean-variance optimization 

Markowitz (1952) proposed the mean-variance (MV) model and was awarded the Noble Prize in Economics in 1990. 

The MV model used mean and variance, which are calculated from historical asset prices to quantify the expected 

return and risk of the generated portfolio. The MV model assumes that the investor wants to either maximize the 

expected return for a given level of risk or minimize the risk for a given return (Kolm et al. 2014). However, in this 

study we only show optimization with minimal variance. The MV model is described as follows: 

                                                           Minimize:                                 

        σ2 = ∑ ∑ 𝑤𝑖
𝑁
𝑗=0 𝑤𝑗

𝑁
𝑖=0 Icj       (1) 

                                                                 Subject to:        𝛾 = ∑ 𝑤𝑖𝐸𝑖
𝑁
𝑖=1                      (2) 

∑ 𝑤𝑖 = 1𝑁
𝑖=1        (3) 

𝑤𝑖 ≥ 0              (4) 

 

where N is the total number of assets, which indicates the dimensionality of optimization in the portfolio. wi is the 

weight of each  i asset in the portfolio to be optimized; 
2
 represents the variance of the portfolio which generally refers 

to the risk of the portfolio; Cij is the covariance of the return between assets i and j;  is the expected or target 

performance; and 𝛾Ei is the average return on an individual asset i. 

2.2 CNN 

A convolutional neural network (CNN) is a kind of deep learning model for processing grid model data, such as image 

processing and natural language processing. CNN can be applied to predict time series data (Sadouk 2019). CNN can 

significantly improve the quality of learning models by reducing the number of parameters. CNN is mainly composed 

of three types of layers: a convolution layer, a clustering layer, and a fully connected layer (Albawi et al. 2017). The 

first two layers, the convolution layer and the grouping layer, perform feature extraction, while the last layer, the fully 

connected layer, directs the extracted features to the output (Miloševi ́c and Rackovi ́c 2019). 

2.3 LSTM 

Long-term short-term memory (LSTM) was proposed by Hochreiter and Schmidhuber (Hochreiter and Schmidhuber 

1997). The model is a class of RNN but has a memory function, which allows LSTM to recycle data over a long period 

of time compared to RNN (Fischer and Krauss 2018). The LSTM model filters the information that enters through door 

structures consisting of an entrance door, a forgotten door, and an exit door to improve and maintain memory cells. 

LSTM is particularly popular in the field of financial time series forecasting, as the model can effectively manage the 

redundancy of historical data (Gao et al. 2021). The operating equation of LSTM is as follows: 

 

 

                             Forget gate :                        ft=(w σf[ht-1, xt] + bf)      
    (5) 

                             Input gate :                     it = (wi[ht-1, xt] + bi)         (6) 

                              Ot = (w σ0[ht-1, xt] + b0)       (7) 

                                         C̃t= tanh(wc[ht-1,xt] + bc)       (8) 

                            Output gate : 

                               ct=ft  ct-1 + it  c̃t         (9) 

        ht = Ot tanh(ct)        (10) 
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where ft it  and Ot denote respectively the forgotten door, the entrance door and the exit door; w is the weight  of the 

matrix; bt, bi and bo indicate the   polarization of the forgetting door, the entrance door and the exit door, respectively;  

 means the sigmoid function; xt and ht designate respectively the input and output of current at time t;  This is the  

value of the entrance gate at time t; and the hyperbolic function (tangent) is represented by tanh
. 

2.4 BiLSTM 

Long-term bidirectional memory (BiLSTM) is an improved version of LSTM with the ability to access the front and 

rear directions of the input feature (Dong et al. 2014). The main difference between BiLSTM and LSTM is that it uses 

two hidden layers. BiLSTM was found to be better than LSTM in terms of predicting time series data (Siami-Namini et 

al. 2019). The output of the hidden layer of BiLSTM has the activation function both forward and backward. The 

BiLSTM equations (Yang and Wang 2022) are described as follows:  

                                               ℎ𝑡
⃑⃑  ⃑ = σ(𝑊𝑥ℎ → 𝑥𝑡 + 𝑊ℎ⃑⃑ ℎ⃑⃑ ℎ𝑡−1

⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  + 𝑏ℎ⃑⃑ )    (11)  

          ℎ𝑡
⃖⃑ ⃑⃑ = σ(𝑊𝑥ℎ ← 𝑥𝑡 + 𝑊ℎ⃑⃑⃖ℎ⃑⃑⃖ℎ𝑡−1

⃖⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑ + 𝑏ℎ⃑⃑⃖)     (12) 

𝐻𝑡 = 𝑊𝑥ℎ → ℎ⃑  + 𝑊ℎ⃑⃑⃖𝑦ℎ⃑
 + 𝑏𝑦     (13) 

where  represents the function for activating the model. W is the weight of the matrix; Wxh is the weight of the input  

(x) in the hidden layer (h);  Ht indicates the entrance of the  hidden layer; and bx denotes the polarization of the 

respective gates (x). The output is carried out by updating forward and backward structures.ℎ𝑡
⃑⃑  ⃑ℎ𝑡

⃖⃑ ⃑⃑  

2.5 Robust statistics 

In real-world applications, data collection often includes atypical observations that deviate from the majority or mass of 

data, in which these observations are referred to as outliers, especially in financial time series data. For example, for 

stock prices, outliers deviate from the general trend in the data. Therefore, it is very difficult to predict future stock 

prices. 

 To overcome these limitations, this study uses a robust statistical theory (Maronna et al. 2019) to estimate the 

appropriate dataset to use in the machine learning training process. 

2.5.1 The Classic Robust Location Estimator 

The mean and median of the sample are considered location estimators of the data distribution. The main difference is 

that the sample mean is not robust to extreme outliers. For example, the closing price of a certain stock in a week falls 

immediately for unexpected reasons. For example, provided that the historical closing prices of a certain stock are {243, 

190, 150, 80, 56, 28, 142}, in this case, the sample average is 125, which is not considered a good location estimator for 

these observations. Then the median of the sample is 150, which is a robust data location estimator. However, if the 

distribution of data is considered approximately normal, then the sample mean would be considered a better estimator 

than the sample median. The robust location estimator is a combination of these two classical estimators. To put it 

precisely, when there are extreme outliers in observations, the robust estimator approaches the median of the sample. 

On the other hand, the estimated location is close to the sample average. 

2.5.2 Huber Location Estimator Tool 

Huber (1964) proposed a good combination of mean and median, called a robust location estimator or M estimator of a 

location, which can be described as follows:  

 

𝜇̂ = 𝑚𝑖𝑛𝜇 ∑ 𝜌(𝑥𝑖 − 𝜇)𝑛
𝑖=1       (14) 

 

where is a robust location estimator of the observation; 𝜇̂xi is the observation variable I; represents the error function. 

Robust location is a parameter that minimizes function to ensure that the parameter provides the minimum error 

between the location estimator and all observations. Several methods have been proposed (Maronna et al. 2006) to find 

the local minimum of the function such as the maximum likelihood estimator (MLE). In this paper, we use a numerical 

method, the Newton-Raphson method, to find the robust location estimator.𝜌 𝜇𝜌𝜌 
The Newton–Raphson method is an iterative method for solving nonlinear equations. To solve the equation  h(y) = 

0, h is set to be linearized at each iteration. In a location M-estimator, it is necessary to solve the equation  
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Iterations are defined as follows:  h(μ) = 0 for h(μ) = arg { Ѱ ( x - μ ) } 
 

 𝜇𝑚+1 = 𝜇𝑚 +
∑ Ѱ(𝑥𝑖−𝜇𝑚)𝑛

𝑖=1

∑ Ѱ′(𝑥𝑖−𝜇𝑚)𝑛
𝑖=1

      (15) 

Where is the value of the location estimator at iteration 𝜇𝑚m. x is defined by the following function with respect to a 

given positive constant of k as follows: 

                 Ѱ𝑘(x) = {
𝑘,                 𝑥 > 𝑘
𝑥,    − 𝑘 ≤ 𝑥 ≤ 𝑘

−𝑘,               𝑥 < −𝑘
     (16) 

if is bounded, its derivative tends to be infinitely zero (Hampel et al. 2011). If Ѱ𝑘k tends to infinity, then is the mean. 

On the other hand, if Ѱ𝑘k tends to zero, then the acts as the median. In this article, we use Ѱ𝑘k = 1.435 in our 

proposed method. This value is similar to that used by Fox and Weisberg (2019). 

3. Experimental process 

3.1. Data preparation 

One of the biggest challenges in forecasting inventories is capturing the financial data schema of the time series 

between the past and the future (Wang et al. 2020). As a result, it is easier to forecast stable inventories than volatile 

stocks. Wang et al. (2020) randomly select 21 FTSE100 stocks as a sample for the machine learning prediction process 

before optimization. Chen et al. (2021) randomly selected 24 stocks from the SSE50 as candidate assets in the stock 

prediction process before forming a portfolio. Ma et al. (2021) used 49 stocks from the SSE100 as a dataset for 

predicting stocks using machine learning before building a portfolio. In addition, many researchers agree to hold about 

10 different stocks in the portfolio. For example, Soeryana et al. (2017) chose five different stocks from the optimal 

portfolio. Abrami and Marsoem (2021) built a portfolio of eight assets. Therefore, our study randomly selected 25 

stocks that fully traded between January 1, 2015 and December 30, 2020 covering 1462 trading days from the SET50 

index and used the closing price as an experimental dataset, large enough for individual investors to build a portfolio. 

(Zaimovic et al. 2021). 
 

Table 1 provides summary closing price statistics for 25 stocks. The stocks with the highest and lowest returns are 

clearly Delta and IRPC, while the stocks with the highest returns and the lowest standard deviation are SCC and LH, 

respectively. 

 

Table 1. Summary statistics for experimental data. 

Stock Maximum Minimum Average Standard 

deviation 

AOT 81 25,4 52.74 15.72 

COM7 27.25 18.5 22.26 2.27 

HMPRO 12 4.07 7.8 2.06 

BJC 66 27.22 44.42 9.12 

BTS 14.2 7.85 9.79 1.53 

CPALL 90 37.5 63.81 13.46 

CPN 86.25 33.25 60.99 13.53 

DELTA 684 30 81.12 44.62 

DTAC 96.25 27.75 48.93 15.18 

SHE 69.5 19.1 36.46 11.48 

GLOBAL 19.61 6.33 13.24 3.58 

INTUCH 83.5 43 59.31 8.8 

IRPC 8.15 1.88 4.77 1.38 

IVL 62.5 16.9 36.27 12.24 

KCE 64.5 12 34. 12.31 
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KTC 60 6.22 23.28 13.15 

LH 12.2 7 9.53 1.26 

AS 45.25 14.49 34.28 6.63 

MTC 68.25 11 36.75 15.01 

PTT 58.8 19.8 39.54 8.32 

PTTEP 160 42.5 101.83 23.64 

PTTGC 103 24 63.98 14.4 

RATCH 81.5 46 57.01 5.73 

SAWAD 80.75 19.49 42.52 11.55 

SCC 550 267 454.1 59.68 

3.1.1. R-CNN-BiLSTM Architecture 

This study proposes a hybrid R-CNN-BiLSTM model to improve prediction accuracy. The proposed model consists of 

three parts: data transformation, feature extraction, and price forecasting. First, the data transformation component 

converts the closing prices of stocks into the robust domain, which is the non-noisy version of the data. In this study, 

direct stock closing price data is not suitable for machine learning training due to the high standard deviations. 

Therefore, we need to transform data to make it more relevant to the training process. The closing prices of the shares 

are divided into a small time series of 4 days, called latency. 

The latency times overlap 1 day with each other. The Huber location estimator of each latency is calculated using 

equations (14) and (15).       

Secondly, feature extraction is performed using a CNN network. CNN has the ability to identify important factors in 

the data, called "characteristics." The purpose of this step is to preserve historical data in time series data and feed it into 

BiLSTM. Therefore, input data is converted by performing convolution operations on the time series data time steps 

using a sequence aliasing layer. In the next step, the two-dimensional convolutional layer is used to extract 

characteristics from the data. The filtering size of the first convolutional layer is 3 × 3 and the stride parameter is set to 

{a = 1, b = 1}, 1}, where a is a vertical step size and b is a horizontal step size. 

The first convolutional layer is followed by Batch Normalize (BN), which normalizes a mini batch of data across all 

data points to speed up the CNN formation process. In our model, the exponential linear unit (ELU) is used as the 

activation function. This function performs the identity operation on positive inputs and exponential nonlinearity on 

negative inputs. The filtering size of the second and third convolutional layers increases to 5*5 and 7*7, respectively. 

The next layer is the grouping layer. It subsamples by dividing the data into sub-regions and then calculating the 

maximum for each region.  

The sequence structure of the input is restored using the sequence unfold layer. Finally, the spatial dimensions of the 

data are reduced with the flattened layer. An overview of the proposed framework for the CNN model is shown in 

Figure 1. 
                                                          1st layer        2nd layer                     3rd layer 
                                                         convolutive                convolutive                convulitive 

 
Fig.1. The framework of the CNN model 

 

 

Finally, price forecasting using BiLSTM is performed. CNN's flattened data is used as input to BiLSTM. The input size 

of the first BiLSTM layer is 500 and the number of hidden units is 128. Tanh is used as the state activation function and 

Sigmoid as the door activation function. To prevent the network from overadapting, we place the abandonment layer 

next to the BiLSTM layer. Its operation changes the underlying network architecture between interactions by randomly 

setting input elements to zero with uniform probability. For the second BiLSTM layer, we decrease the input size and 

the number of hidden units to 256 and 16, respectively. The last two layers are fully connected and regression layers are 

the standard of the CNN architecture. The BiLSTM framework is shown in Figure 2. 

 
 
                                                                     

1st layer BILSTM 

                  

2nd layer BILSTM layer 
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Fig. 2.  The framework of the BiLSTM model. 

 

3.1.2. Training and testing process 

One of the most important factors that determine the success of machine learning is the process of training and testing. 

In this study, we divided the closing price of each chosen stock into training and test sets according to the ratio of 80:20. 

Therefore, the first 1201 days of data are used in the training process and the last 262 days are used as a test set. 
 

3.1.3. Hyperparameter parameter 

The training data set is transmitted to the proposed training model. In this step, the different hyperparameters of the 

neural network are specified. These include the number of hidden layers, the number of eras, and the size of batch 

entries. Finding optimal hyperparameters remains a major challenge in the field of deep learning. In this study, 

hyperparameters are defined manually by trial and error with the selection of the best parameters of the experiment. The 

following is a detailed description of hyperparameters and their value parameters. 
1. Number of eras: An era is a complete training cycle. In our experiments, we set the number of eras at 100 and 

carried out our training. After training, we found that all workouts stop at a maximum of 100 to 120 eras. 

Therefore, 100 is selected as the value for this hyperparameter. 

2. The number of hidden layers: This is the number of layers between the input and output layers. For the CNN 

network, we set the number of hidden convolutional layers to 100, 100 and 50. In the BiLSTM network, we 

have set these numbers to 128 and 16. 
3. Learning rate: This value is defined for the precise convergence of the model in the prediction. In our experiment, we 

set an apprenticeship rate at 0.0001. Many researchers recommend using a learning value below 0.01 (Hastie et al. 

2017). 

4. Optimizer: This is the optimization function used to get the best results. In our work, we use the Adam optimizer, as it 

works well for LSTM-based networks. 

5. Loss function: The mean square error (RMS) was used as the loss function. Our implementation was written using 

MATLAB with GPU compute. 

3.1.4. Selection of actions 

Once all stock prices are successfully predicted, high-quality stocks are selected to perform the optimization process 

one by one by ranking them in descending order based on expected (average) return. The expected share price is used to 

calculate the return on the stock using equation (17). 

𝑅̂𝑡 =
𝑝𝑡 − 𝑝̂𝑡−1 

𝑝𝑡−1 
       (17) 

where is the return of the stock 𝑅̂𝑡 at time t, while is the expected share price at time t  and is the expected share price  

at time 𝑝̂𝑡 t-1𝑝̂𝑡 . 
As a result, we select the top number (N) of stocks with a higher potential return in ranking order. Only the selected 

securities are qualified to build the portfolio in the next step. The MV model is used in this process to build the optimal 

portfolio with different proportions of asset allocation depending on the qualified stocks. The optimization process is 

carried out using the MS Excel solver in which the minimum variance is defined as the objective function and the 

weight of each asset is adjusted using the Excel solver. Therefore, each of the optimal portfolios with the lowest 

variance is found and used for analysis. 

4. Experimental results 

This section first presents the prediction performance of the LSTM, BiLSTM, CNNBiLSTM and R-CNN-BiLSTM 

models. In the following, this study constructs different portfolio sizes using the classic MV model to compare the 

prediction result of different machine learning models without transaction fees. 
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5.1. Prediction performance results 

5.1.1. Machine Learning Metrics 

In this section, the predictive accuracy of machine learning models is evaluated by three criteria, mean absolute error 

(MAE), mean square error (MSE), and mean absolute error in percentage (SMAPE), as they are widely used as 

performance measures (Jierula et al. 2021; Singh et al. 2021). These measures are described as follows: 

 𝑀𝑆𝐸 =
1

𝑛
∑ (𝑝̂𝑖 − 𝑝𝑖)2𝑛

𝑖=1
     (18) 

𝑀𝐴𝐸 =
1

𝑛
∑ |(𝑝̂𝑖 − 𝑝𝑖)|𝑛

𝑖=1      (19) 

 𝑆𝑀𝐴𝑃𝐸 =
1

𝑛
∑

|(𝑝𝑖−𝑝𝑖)|

|𝑝𝑖|+|𝑝𝑖|

𝑛

𝑖=1
     (20) 

where refers to the predicted price, represents the actual value, and 𝑝̂𝑖𝑝𝑖n indicates the total number of shares used in 

the experiment. 

4.1.2. Prediction performance 

Tables 2 and 3 present the results of each model that was applied in accordance with the performance measures used. 

From both tables, it is clear that the R-CNN-BiLSTM model provides most of the best results compared to the other 

models in the experiment. However, there are still a few exceptions in which some comparison models work better. For 

example, the prediction error of BTS, LH, PTTGC and SAWAD shares in terms of BiLSTM's MAE, MSE and SMAPE 

is lower than that of R-CNN-BiLSTM. Another example is that the EAWs, MSEs and SMAPE in the SCC stock that 

have been predicted using CNN-LSTM are smaller than R-CNN-BiLSTM. 

 

 

 
Table 2. Comparison of prediction performance between LSTM and BiLSTM. 

Stock LSTM BiLSTM 

 MAE MSE SMAPE MAE MSE SMAPE 

AOT 1.8492 6.0365 1.4947 1.3972 3.8694 1.1617 

COM7 0.3848 0.2955 0.9173 0.3652 0.2743 0.8640 

HMPRO 0.2085 0.0845 1.1439 0.2095 0.0897 1.1524 

BJC 0.9812 1.7666 1.2952 1.1242 2.1052 1.4813 

BTS 0.2837 0.1599 1.2865 0.2313 0.1095 1.0495 

CPALL 0.9605 1.6107 0.7317 0.9228 1.5193 0.7042 

CPN 1.8462 7.1009 1.9229 1.7676 6.5828 1.8486 

DELTA 4.0368 8.0218 13.123 3.8862 7.7699 12.226 

DTAC 0.9254 1.5075 1.1961 0.9695 1.5263 1.2567 

SHE 1.0341 2.0658 1.2442 1.0010 1 1.9209 1.2035 

GLOBAL 0.4385 0.3665 1.5382 0.4237 0.3466 1.4796 

IRPC 0.7735 0.6996 1.3212 0.6152 0.4566 1.0894 

INTUCH 0.7602 1.3049 0.7142 0.7457 1.2532 0.7002 

IVL 1.1677 2.4750 2.2526 1.1137 2.1696 2.1337 

KCE 1.3583 2.9136 3.0482 1.2504 2.6176 2.9376 

KTC 1.6230 7.4166 2.0531 1.5991 7.5624 2.0145 

LH 0.4567 0.3537 3.0500 0.3830 0.2645 2.5767 

AS 4.2719 2.5754 9.3568 3.5595 1.8810 7.9947 

MTC 2.9454 1.3472 2.7505 2.2480 8.7324 2.1013 

PTT 0.9246 2.2412 1.2935 0.9153 2.0173 1.2794 

PTTEP 2.6926 2.1457 1.5534 2.5247 2.0952 1.4822 

PTTGC 4.7754 4.1757 5.5750 3.2552 2.5053 3.9878 
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RATCH 1.0472 2.4033 0.8817 1.3077 3.1643 1.0816 

SAWAD 3.8613 3.1299 3.2622 3.5476 2.5694 2.9785 

SCC 3.6151 1.7271 4.9859 2.6922 1.0819 3.7868 

 

Mean absolute error (AEM): As shown in Tables 2 and 3, the mean AEM value for each of the machine learning models 

is decreasing as follows: 1.7219 for LSTM, 1.5350 for CNN-BiLSTM, 1.5222 for BiLSTM, and 1.4582 for R-CNN-

BiLSTM. Stock PTTGC has the highest EAW of 4.7754, which is found for the LSTM model. The lowest EAW is the 

HMPRO stock, which was predicted using CNN-BiLSTM, with a value of 0.1651. RMS: According to Tables 2 and 3, 

the mean ESM values for each of the machine learning models are reported as follows: 2.9000 for CNN-BiLSTM, 

2.5794 for BiLSTM, 2.5570 for LSTM and 1.8081 for R-CNN-BiLSTM. The largest EAW is 9.3412, which is found on 

the MTC stock generated from CNN-BiLSTM. Using R-CNN-BiLSTM in HMPRO stock, the MAE minus of 0.0523 

was predicted. Average absolute percentage error (SMAPE): From Tables 2 and 3, the mean values for each of the 

machine learning models are described from top to bottom as follows: 2.7197 for LSTM, 2.4589 for CNN-BiLSTM, 

2.4229 for BiLSTM and 2.3332 for R-CNN-BiLSTM. The largest SMAPE is 13.487 which is associated with the 

predicted DELTA stock using CNNBiLSTM. The lowest SMAPE is found on the CPALL stock, model R-CNN-

BiLSTM, with a value of 0.5713. 

In conclusion, most of the R-CNN-BiLSTM results outperform the LSTM, BiLSTM and CNN-BiLSTM models for 

the inventory forecasting process in terms of EAW, MSE and SMAPE. Specifically, 14 stocks, HMPRO, BJC, CPALL, 

CPN, DELTA, EA, GLOBAL, IVL, KCE, KTC, MINT, MTC, PTT and PTTEP, which were predicted using R-CNN-

BiLSTM, scored best on all three measures, followed by BiLSTM and CNN-BiLSTM. What's more, a unique 

traditional machine learning model, LSTM, is the worst, with several predictive errors in this experiment. Specifically, 

only the original RATCH is the most efficient in terms of MAE and SMAPE for the LSTM model. It can be seen that 

the proposed model, R-CNN-BiLSTM, which uses robust entry characteristics instead of the direct closing price of 

stocks in the machine learning training process, achieves a majority of better results than machine learning models that 

use the direct closing price of stocks. Seize. 

 

 

 
Table 3. Comparison of prediction performance between CNN-BiLSTM and R-CNN-BiLSTM. 

Stock LSTM BiLSTM 

 MAE MSE SMAPE MAE MSE SMAPE 

AOT 1.3178 3.3801 1.0902 1.3700 3.1541 1.1104 

COM7 0.4277 0.3319 1.0172 0.3292 0.1934 0.7758 

HMPRO 0.1651 0.0585 0.9034 0.1747 0.0523 0.9577 

BJC 1.0290 1.8592 1.3327 0.8566 0.8566 1.1343 

BTS 0.3006 0.2078 1.3639 0.2627 0.1243 1.1716 

CPALL 1.0490 2.0394 0.7842 0.7528 1.0157 0.5713 

CPN 1.8837 6.6585 1.9341 1.2533 2.8825 1.3019 

DELTA 4.1104 8.1768 13.487 3.4162 5.0508 12.143 

DTAC 1.1074 1.9661 1.4468 0.8781 1.2819 1.1335 

SHE 0.9578 1.6883 1.1501 0.8770 1.3480 1.0603 

GLOBAL 0.3636 0.2451 1.2451 0.3325 0.2011 1.1091 

IRPC 0.7817 1.2752 0.7347 0.7434 1.1314 0.6960 

INTUCH 0.7479 0.7327 1.2883 0.9645 1.0976 1.5837 

IVL 0.9090 1.5083 1.7234 0.8079 1.0826 1.5329 

KCE 1.2586 2.5306 2.8828 0.7679 0.9975 1.7225 

KTC 1.8072 8.4518 2.3359 0.9608 2.2998 1.2831 

LH 0.4215 0.3194 2.8259 0.4915 0.3743 3.2514 

AS 3.1798 1.5235 7.2280 3.1251 1.3556 7.0846 

MTC 2.2111 9.3412 2.0425 1.8174 6.4816 1.6748 

PTT 0.7665 1.2902 1.0616 0.6891 0.9916 0.9468 

PTTEP 2.0733 1.1074 1.1690 2.0274 1.0305 1.1313 

PTTGC 4.7207 4.3939 5.5390 5.1528 4.9323 5.9606 

RATCH 1.1446 2.8712 0.9626 1.0720 2.0291 0.8916 

SAWAD 3.5888 2.8325 2.9873 3.6310 3.0988 3.0133 
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SCC 2.0515 7.7104 2.9372 3.7010 1.8256 5.0882 

4.2. Results of portfolio optimization 

4.2.1. Portfolio metrics 

In this section, the performance of different optimal portfolios is measured and compared using three criteria, the 

Sharpe ratio, the average return and the risk of the portfolio. These metrics are widely used to evaluate and compare the 

performance of equity portfolios (Lefebvre et al. 2020; Sikalo et al. 2022; Mba et al. 2022). Another measure of the 

portfolio is the Sharpe ratio, which can be described as follows: 

  𝑅𝑎𝑡𝑖𝑜 𝑑𝑒 𝑆ℎ𝑎𝑟𝑝𝑒 =
𝐸𝑝−𝑅𝑓

σ
      (21) 

 

where is the expected (average) return or average return of the portfolio; 𝐸𝑝  is the standard deviation or risk of the 

portfolio; and refers to risk-free assets. In this study, we use a risk-free asset rate of 0.022, based on the Thai 10-year 

Treasury rate.𝑅𝑓 

4.2.2. Performance of portfolios of different sizes 

Numerous studies have shown that owning too many different stocks makes them difficult to control and manage, 

especially for individual investors. Several studies related to portfolio optimization consider building a portfolio with 

less than 10 stocks (Almahdi and Yang 2017). Paiva et al. (2019) found that a portfolio with an average of seven stocks 

outperforms other portfolios with a different number of stocks. Wang et al. (2020) showed that the optimal portfolio 

with ten stocks performs better than a portfolio with other numbers of stocks. Chen et al. (2021) argued that having 

seven stocks in a portfolio is the most appropriate number for portfolio formation. As a result, this study decides to 

build portfolios corresponding to the number of shares N = 5, 6, 7, 8, 9 and 10 and to comprehensively evaluate the 

performance of the proposed models. The annualized average return, annualized standard deviation and annualized 

Sharpe ratio are used as indicators.  Figure 4 shows annualized returns for different portfolio sizes N = 5, 6, 7, 8, 9 and 

10 are presented in three sub-graphs in which the y-axis of each sub-graph shows the amount of the average return, the 

standard deviation and the Sharpe ratio calculated annually, while the X axis of each sub-graph represents the different 

models.  which are formed by a different number of actions. It can be clearly seen in Figure 4 that when the number of 

N = 5, R-CNN-BiLSTM + MV is the best performer in terms of average yield, standard deviation and Sharp ratio. 

Specifically, when N = 5, R-CNN-BiLSTM+MV has the highest average efficiency of 0.47, followed by 0.46 for R-

CNN-BiLSTM+1/N, 0.43 for CNNBiLSTM+MV, 0.42 for BiLSTM+MV, 0.38 for LSTM+MV, 0.37 for 

CNN+BiLSTM+1/N, 0.36 for LSTM+1/N, 0.34 for BiLSTM+1/N, 0.07 for Random+MV and 0.02 for Random+1/N. 

In addition, when N = 9 and 10, R-CNN-BiLSTM+MV outperforms other models in terms of standard deviation. 

Specifically, R-CNN-iLSTM+MV has the lowest standard deviation of 0.07 for N = 9 and 10. Regarding the 

measurement of the Sharpe ratio, when N = 5, 8, R-CNN-BiLSTM+MV provides the best Sharpe ratios of 2.62 and 

1.99, respectively. However, R-CNN-BiLSTM+1/N also has the same Sharpe ratio as R-CNN-BiLSTM+MV when N = 

8.   
In summary, a clear advantage of R-CNN-BiLSTM+MV is found with a portfolio size N = 5 in which all three 

indicators outperform the other models except for the risk of Random+MV and Random+1/N; however, these two 

models have low expected returns of 0.07 and 0.02, respectively, but it is still reasonable to consider R-CNN-

BiLSTM+MV superior. In addition, most models tend to perform better in terms of annualized expected return, 

annualized Sharpe ratio, and standard deviation or annualized risk when the number of stocks in the portfolio is five. 
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Fig. 3. Annualized portfolio performance for different portfolio sizes 

 

5. Discussion 

The article aims to expand the existing literature on portfolio optimization with stock selection. The proposed 

prediction model is developed based on the use of robust statistical theory and the CNN-BiLSTM machine learning 

model to advance the MV model, which integrates the benefits of machine learning into stock selection. This study has 

several results. 

First, this article compares the predictive performance of LSTM, BiLSTM, CNN BiLSTM and inventory 

forecasting. The experimental results show that BiLSTM is superior to other models, indicating that it is more suitable 

for predicting financial time series than the other machine models applied in this experiment, confirming the study by 

Wang et al. (2020) showing that this traditional LSTM was superior in terms of prediction performance. Second, this 

study improves the predictive accuracy of CNN-BiLSTM by transforming the closing price of shares into a robust entry 

feature that can effectively reduce prediction error before the model predicts the future price. After comparing the 

results of the R-CNN-BiLSTM to LSTM, BiLSTM and CNN-BiLSTM, it was discovered that the robust input is 

appropriate to be used as an input feature for the machine learning training process to capture time series financial data 

that can overcome other comparison models when the direct closing price of shares is used as an input characteristic. 

Finally, the result of the prediction process is integrated into the stock selection for portfolio optimization; Stocks 

with higher returns calculated from predicted prices are chosen to build the optimal portfolio. The experimental results 

show that holding five shares is appropriate and realistic for individual investors, which is different from the results of 

Wang et al. (2020) and Chen et al. (2021). In addition, most of the results of R-CNN-BiLSTM+MV, R-CNN-

BiLSTM+1/N, CNN-BiLSTM+MV, CNN-BiLSTM+1/N, BiLSTM+MV, BiLSTM+1/N, LSTM+MV and LSTM+1/N 

are superior to Random+MV and Random+1/N in terms of Sharpe ratio, average return and standard deviation, 

10

E3S Web of Conferences 412, 01077 (2023)   https://doi.org/10.1051/e3sconf/202341201077
ICIES’11 2023



indicating the importance of selecting high-quality stocks in portfolio optimization. The importance of stock 

preselection is similar to the findings of Wang et al. (2020), Ta et al. (2020), and Chen et al. (2021). 

6. Conclusion 

This study enriches theoretical research on stock price forecasting and portfolio optimization. This paper uses four 

prediction models, which can capture financial time series data to ensure high-quality assets before starting portfolio 

optimization. Specifically, LSTM, BiLSTM, CNN-BiLSTM and R-CNN-BiLSTM are adopted to predict the daily 

future closing price of the stock and compare R-CNNBiLSTM's forecast results with LSTM, BiLSTM and CNN-

BiLSTM to show the predictability of R-NNBiLSTM using robust data instead of the direct closing price of the shares 

to more accurately predict financial time series data. 

While this study provides useful information, there are some limitations. First, we only use stock data in Thailand. 

Due to economic differences between countries, this method may not be suitable for stock markets in other countries. 

Second, several external factors have an impact on the financial market and can be added as input indicators to improve 

the method, such as the COVID-19 crisis, interest rates and politics. Third, this study does not consider temporal 

complexity as a constraint for comparing results. Finally, since this study manually defines hyperparameters based on 

trial and error, the application of hyperparameter optimization algorithms can provide better hyperparameters. In future 

research, temporal complexity should be considered to further demonstrate the applicability of the proposed method. 
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