

Distributed storage optimization using multi-agent
systems in Hadoop

Manar Sais, Najat Rafalia, Rabie Mahdaoui, Jaafar Abouchabaka

Department of Computer Science, Computer Research Laboratory LaRI,

Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco

Abstract. Understanding data and extracting information from it

are the main objectives of data science, especially when it comes to

big data. To achieve these goals, it is necessary to collect and

process massive data sets, arriving at the system in different

formats at great velocity. The Big Data era has brought us new

challenges in data storage and management, and existing state-of-

the-art data storage and processing tools are poised to meet the

challenges while posing challenges to the next generation of data.
Big Data storage optimization is essential for improving the overall

efficiency of Big Data systems by maximizing the use of storage

resources. It also reduces the energy consumption of Big Data

systems, resulting in financial savings, environmental protection,

and improved system performance. Hadoop provides a solution for

storing and analysing large quantities of data. However, Hadoop

can encounter storage management problems due to its distributed

nature and the management of large volumes of data. In order to

meet future challenges, the system needs to intelligently manage its

storage system. The use of a multi-agent system presents a

promising approach for efficiently managing hot and cold data in

HDFS. These systems offer a flexible, distributed solution for

solving complex problems. This work proposes an approach based

on a multi-agent system capable of gathering information on data

access activity in the HDFS cluster. Using this information, it

classifies data according to its temperature (hot or cold) and makes

decisions about data replication based on its classification. In

addition, it compresses unused data to manage resources efficiently

and reduce storage space usage.

Index Terms— Big Data, Energy consumption, Environmental

protection, Storage, Hadoop, HDFS, Multi-Agent system

1 INTRODUCTION

In today's world, the volume of data generated across various sectors is experiencing

significant growth. This has led to the emergence of the concept of big data, which offers

significant advantages through the utilization of its associated technologies. The practical

implementation of big data has become the primary focus for researchers [1], urging us to

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons

Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/).

E3S Web of Conferences 412, 01091 (2023)
ICIES’11 2023

https://doi.org/10.1051/e3sconf/202341201091

carefully consider the most effective approaches for storing, processing, and analyzing such

vast amounts of data. As big data technology continues to develop and gain popularity, an

increasing number of companies are adopting platform systems based on open-source

software like Hadoop[2]. Simultaneously, many companies and applications are

transitioning from traditional technical architectures to embrace the potential of big data

platforms.[3], [4].

Maximizing the efficiency of data storage is crucial for minimizing energy consumption

in big data systems. By implementing efficient data storage methods, companies can

significantly reduce the energy required for powering and cooling their data storage

equipment. Moreover, organizations can realize cost savings and promote a sustainable,

environmentally friendly approach to managing big data by embracing data storage

optimization strategies.

Compression and deduplication are key techniques for optimizing data storage, as they

eliminate redundant or unnecessary data, resulting in a reduced data footprint.

Consequently, storage systems consume less energy and require less storage space.

Additionally, data storage optimization enhances data access speed and efficiency, leading

to reduced time and energy consumption for retrieving and processing information.

As the storage and processing of big data has become commonplace in recent years,

different approaches are being adapted to handle the data and its immensity, such as

Hadoop[5]. Apache Hadoop has become the most popular system for processing large

datasets, and has become an open-source massive data management software that is

adopted in situations where it is necessary to process very large quantities of data. Hadoop

provides a scalable, fault-tolerant environment. It enables the processing and storage

aspects of a distributed application to be distributed. The Hadoop MapReduce framework

serves as the processing component of Hadoop, and the Hadoop Distributed File System

(HDFS) serves as the storage component.

The Hadoop project's main component, HDFS (Hadoop Distributed File System), serves

as the foundation for distributed computing's data storage management. HDFS is a

distributed file system based on a master-slave architecture, enabling the management of

large datasets on standard hardware. It was inspired by GFS (Google File System) to

guarantee high-speed access to application data and is used to scale a single Apache

Hadoop cluster to hundreds or even thousands of nodes. HDFS is based on two daemons,

the NameNode and the DataNode. The NameNode runs on the master node, manages

system metadata, logically divides files into equal-sized chunks, and controls their

distribution within the cluster. Many DataNode processes run on the slave nodes, where

they store the data blocks and perform the management tasks assigned to them by the

NameNode. They also handle read and write requests from users[6].

As technology advances, many scenarios require new storage constraints, leading HDFS

to face new challenges in several areas.

As data continues to grow and accumulate, the popularity of data access varies

considerably. For example, one platform will always write the latest data, but the written

data will generally not be queried at the same frequency. There is always frequently used

data, and data that is rarely used but takes up valuable storage space in the cluster. This can

lead to inefficient use of resources as storage is consumed by inactive data, reducing the

capacity available for active data, increasing storage costs, and reducing cluster

performance. If data adopts the same storage strategy whether it's hot data or cold, this is a

waste of cluster resources[7]. It is therefore urgent to optimize the HDFS storage system

according to the degree of consultation and use of this data.

A multi-agent system (MAS) is a system of several autonomous entities, called agents,

which interact with each other to achieve common or distinct goals. Each agent has a

certain degree of autonomy, the ability to perceive the environment and the capacity to

2

E3S Web of Conferences 412, 01091 (2023)
ICIES’11 2023

https://doi.org/10.1051/e3sconf/202341201091

make decisions and act autonomously. Multi-agent systems offer significant advantages in

diverse fields such as data management, planning, logistics and monitoring. They have been

successfully applied to many problems in a variety of fields, including intelligent

transportation [8] or demonstration learning by environmental robots[9], thanks to their

ability to model complex problems. The ability to leverage multi-agent systems in the

optimization of the Hadoop storage system can lead to systemic benefits. With SMA, the

management of hot and cold data in HDFS becomes more automated, adaptive and

efficient, guaranteeing rapid availability of hot data while saving storage space for less

constrained cold data. This approach facilitates large-scale data management in a Big Data

environment, improving the overall performance of HDFS systems.

With the proposed system, agents in a multi-agent system collaborate to manage storage

in HDFS. One agent is responsible for collecting information on data access activity. This

information is then used by another agent to classify data according to access criteria,

grouping them into two categories: frequently used data and rarely used data. A third agent

is dedicated to managing the replication and compression of unnecessary data. The

remaining sections of this paper are organized as follows: Section II provides an overview

of the related work, Section III delves into the background information, Section IV

introduces the proposed system, and Section VI offers a concluding summary of the paper.

2 RELATED WORK

The development of a storage monitoring and management system for the HDFS cluster

has always been an active area of research. The study presented in[10] introduces a data

access monitoring and replication control management system that categorizes data as hot,

warm, or cold based not only on its age but also on the number of accesses it receives. This

approach provides a suitable labeling system for data classification and management.With

the proposed system, data can move from one category to another (cold to hot and vice

versa) if their number of accesses reaches a certain value, with greater flexibility and

storage efficiency.

The authors in [11] present a technique for storing data in HDFS, which takes data

temperature into consideration to dynamically and automatically move data between these

different storage levels, by moving "cold" data to inexpensive archival storage and "hot"

data to faster storage. In this way, the cluster adapts over time to the characteristics of the

workload in order to make efficient use of scarce, expensive storage space.

In the same context, Kaushik et al [12] present the GreenHDFS technique. This

approach is based on the process of predictive data replication, using file heat prediction for

replica creation and deletion. file’s heat is calculated as a function of the total number of

accesses to the file and its lifetime. Thus, files are classified into hot and cold files

according to their heat. Replicas for cold files are deleted, while replicas are created for hot

files.

The aim of this paper [13] is to present ERMS (Elastic Replication Management System

for HDFS), an elastic replication management system for HDFS that provides an active or

backup model for HDFS storage. This system uses a complex event processing engine to

classify different types of data, then dynamically places additional copies for data

considered hot. When this data becomes cold, ERMS applies erasure coding to it.

In the same context, but using multi-agent systems, this work [14]makes several major

contributions. First, it proposes to create an agent-based simulation framework that is

scalable, dynamically extensible, fast, fault-tolerant and failure-resistant on Hadoop. In

addition, it proposes optimization techniques for implementing this simulation framework

on a Hadoop cluster. These techniques include caching intermediate results to speed up

operations, fast retrieval of agent data and messaging using Lucene indexes, and a

3

E3S Web of Conferences 412, 01091 (2023)
ICIES’11 2023

https://doi.org/10.1051/e3sconf/202341201091

clustering algorithm for frequently communicating agents. These approaches aim to

improve the performance and efficiency of the simulation framework by using the

advantages of multi-agent systems in a Hadoop environment.

3 BACKGROUND

The Hadoop framework includes a system that meets the storage needs of Big Data

applications, known as the Hadoop Distributed File System (HDFS). HDFS is a distributed,

scalable and highly fault-tolerant file system, designed to operate in low-cost hardware

environments. Over a decade has elapsed since the inception of Hadoop, and during this

time, HDFS technology has continued to evolve. Certain existing HDFS technologies have

made significant advancements in addressing specific challenges associated with Hadoop.

3.1 HDFS storage architecture

Hadoop Distributed File System (HDFS) is a distributed storage system part of the

Hadoop ecosystem. It is designed to store and manage large amounts of data on server

clusters. The Hadoop Distributed File System architecture[15], including the daemons, is

illustrated in Figure 1. Three main daemons can form a standard Hadoop cluster. These are

the master daemon (Namenode), the client daemon, and the slave daemon (Datanode). Each

daemon has its own participants. The Namenode stores files metadata such as directory

structure, block namespace, and access permissions, as well as the location of replicas of

each block[16]. NameNode stores this information in memory to speed up read/write

operations. It also handles client requests such as file creation, file deletion, and so on.

DataNodes store actual data at the same time. Each DataNode manages a set of data blocks,

which are stored on the local node's file system, and it also manages read and write

operations on the data blocks assigned to them.

Fig. 1. Apache HDFS architecture.

HDFS includes three types of file operations, read, write and delete, which are managed

by NameNode and DataNode in the system's distributed architecture. When a client needs

to store data, it sends a written request to the NameNode. The Namenode checks the file's

metadata and selects three Datanodes to replicate the data blocks. The client divides the file

into data blocks and sends them to the corresponding DataNodes. Once the data blocks

have been received and stored, each block is hosted on multiple DataNodes to provide fault

tolerance[17]. When reading data, the client sends a read request to the NameNode,

4

E3S Web of Conferences 412, 01091 (2023)
ICIES’11 2023

https://doi.org/10.1051/e3sconf/202341201091

specifying the file to be read, and the NameNode checks the file's metadata and performs

certain operations to tell the client where to read the data. Clients generally read each block

from the first data node[18].

3.2 HDFS replication

A key feature of HDFS is data replication, which offers several advantages. Firstly, it

ensures greater fault tolerance thanks to data availability and system resilience. What's

more, this feature makes the system more effective by simultaneously distributing read and

write loads across several nodes. It's important to note that, despite the advantages of data

replication on the system, such duplication can lead to storage overload. HDFS does not

differentiate between data at the replication level. Frequently used data and less-used data

are distributed across the cluster with the same replication factor. Replicating unused data

can lead to problems such as inefficient use of storage space, additional cost and

management complexity

 HDFS uses a three-way replication strategy, where there are two additional copies,

resulting in a storage overhead of 200%. The first replica is placed on the same node, while

the other two replicas are placed on different racks [10]. Storage efficiency is calculated as

follows:

SE=

3.3 Hot vs Cold data

In HDFS, the two concepts hot data and cold data refer to the frequency of use of data

in a Hadoop cluster. Cold data is old data that is either inactive for a long time or rarely

accessed or used. For example, it may be inactive server logs, old archived data or historic

This type of cold data still takes up storage space, but is considered a lower priority in

terms of access. Hot data, on the other hand, is fresh data that is frequently accessed or

actively used by applications or processing tasks in the Hadoop cluster. Hot data requires

fast availability and accessibility. Additional copies are therefore needed for hot data to

manage node failures smoothly [10].

In a Hadoop cluster, the distinction between hot and cold data enables optimized use of

storage resources in HDFS. Cold data does not require additional replication, thus saving

storage space, while hot data benefits from higher replication to guarantee availability. This

data classification makes it possible to better manage resources and adjust the replication

strategy to the specific needs of the data in the Hadoop cluster. The categorization of data

varies from organization to organization, and there is no standard approach.

Table 1. Organization Policy Example

Data

category
Data age Access Frequency

Hot < 7 days 10x/day

Cold 1 month < age 2x/month

To illustrate, consider an organization that adopts the following policy: data younger

than 7 days and accessed 10 times a day is categorized as hot data. Conversely, data older

than 1 month and accessed twice a month is classified as cold data.

5

E3S Web of Conferences 412, 01091 (2023)
ICIES’11 2023

https://doi.org/10.1051/e3sconf/202341201091

4 SYSTEM DESIGN AND IMPLEMENTATION

The proposed system is based on the use of a multi-agent system (MAS) to manage and

optimize storage in HDFS. It consists of autonomous agents that interact with each other to

achieve specific goals. Each agent plays a specific role and has a certain degree of

autonomy and the ability to make decisions and act independently. The main objective of

this system is to improve the efficiency and resource utilization of Hadoop clusters by

identifying and managing frequently used data (hot data) and rarely used data (cold data).

The system consists of three agents, as shown in the figure 2. In HDFS, read and write

operations performed by clients are recorded in log files. These logs record all operations

and transactions performed on the files, including reading, writing, deleting, moving, etc. In

our system, Agent 1 is responsible for data monitoring. It gathers information on file access

activity in an HDFS cluster from log files, and extracts file metadata to determine access

frequency and time of last use.

Fig. 2. Descriptive diagram of proposed system

The information entered by Agent 1 is used by Agent 2 to classify files as hot or cold.

Here's the scenario: if a file is less than 7 days old and is accessed several times a day, it is

classified as hot. On the other hand, if the age of a file exceeds one month and it is accessed

once or twice a month, the file is classified as cold. This classification enables us to

distinguish between data requiring rapid availability and accessibility, and data that may be

of lower priority.

Agent 3 is responsible for two tasks: managing the data replication factor, based on the

classification performed by Agent 2, and data compression. When a file is added to HDFS,

its replication factor is initially set to 3 and remains at 3 until the category age limit is

reached, regardless of the number of accesses. The system manages replication as follows:

if a file is classified in the hot category, the replication factor is maintained. On the other

hand, if a file is classified as cold, existing replicates are reduced and one replicate is

replaced by a compressed copy. Agent 3 applies data compression techniques to save

storage space, as this data does not require immediate accessibility.

6

E3S Web of Conferences 412, 01091 (2023)
ICIES’11 2023

https://doi.org/10.1051/e3sconf/202341201091

To improve system performance, this optimization task has been automated for a period

to be specified. Agents gather information, classify files and take appropriate action for data

replication and compression. This automation ensures that the system remains up-to-date

and reacts proactively to changes in data usage in the HDFS cluster.

Prior to running the multi-agent system for storage optimization, a Hadoop cluster

operates in a traditional configuration where data is evenly distributed across multiple

storage nodes, regardless of usage or frequency of access. Our storage system (DataNodes)

comprises 1049 Blocks, and the Block pool used is 9.55 BG as shown in figure 3.

Fig. 3. The cluster state before running the system

However, once the multi-agent system is implemented and run on the Hadoop cluster,

storage dynamics are completely transformed. Agents begin to collect information on file

access activity, monitor file metadata, and classify data into hot and cold based on the

frequency of use.

To do this, the agents generate three files. Firstly, Agent 1 generates the

"FileTimestamp" file, which contains the time of every time each file is accessed. Next,

agent 2 generates the "FilesAccessTimes" file, which records the frequency of access to

each file, making it possible to determine whether a file is hot (frequently accessed) or cold

(rarely accessed). Finally, file 3 "coldFiles, lists files identified as cold, i.e. those not

frequently used.

4.1 Replica reduction and cold file compression

As shown in Figure 4, the system also reduces the number of replicas for cold files from

three to just two. if the file is very unlikely to be used, it will have just 1 replicate and a

compressed version. This compression reduces the size of the file, optimizing the use of

storage space. The compressed copy preserves data integrity and accessibility while saving

valuable resources.

Fig. 4. Reducing Replicas of a Cold File and data compression

4.2 Storage space reduction

Through analysis and optimization of our storage infrastructure, we freed up

approximately 4GB of storage space from a total of 10.384228116GB. By consolidating

redundant files and implementing compression algorithms on inactive data, we reduced

7

E3S Web of Conferences 412, 01091 (2023)
ICIES’11 2023

https://doi.org/10.1051/e3sconf/202341201091

storage requirements across the pools. The combined storage savings from the pools

amounted to 4337548776 bytes, equivalent to 4.337548776 GB of storage space now

available for active data and new storage needs, the result is illustrated in Figure 5.

Fig.5. Reduced storage space

5 CONCLUSION

This work proposes an approach to Hadoop storage system management that integrates

the concept of multi-agent systems into data management in HDFS. The system offers an

automated, proactive and innovative approach to hot and cold data management in Hadoop

environments. Using a set of three autonomous agents, the system enables proactive data

management based on data age, frequency of access and usage. Future prospects for

integrating multi-agent systems into data optimization on Hadoop may include the

integration of advanced machine learning techniques where agents can use learning

algorithms to better understand data usage patterns and make more informed and intelligent

decisions about data replication, compression and placement.

This work was supported in part by the National Center for Scientific and Technological Research

(CNRST) and this within the program of the research grants initiated by the Ministry of National

Education, Higher Education, Management Training and Scientific Research.

References

[1] C. Kacfah Emani, N. Cullot, and C. Nicolle, “Understandable Big Data: A survey,”
Computer Science Review, vol. 17, pp. 70–81, Aug. (2015), doi:
10.1016/j.cosrev.2015.05.002.

[2] A. Caggiano, “Cloud-based manufacturing process monitoring for smart diagnosis
services,” International Journal of Computer Integrated Manufacturing, vol. 31, pp.
1–12, Jan. (2018), doi: 10.1080/0951192X.2018.1425552.

[3] S. Ibrahim, T. Phan, A. Carpen-Amarie, H.-E. Chihoub, D. Moise, and G. Antoniu,
“Governing Energy Consumption in Hadoop through CPU Frequency Scaling: an
Analysis,” Future Generation Computer Systems, vol. 54, Feb. (2015), doi:
10.1016/j.future.2015.01.005.

[4] D. M. Nascimento, M. Ferreira, and M. L. Pardal, “Does Big Data Require Complex
Systems? A Performance Comparison Between Spark and Unicage Shell Scripts.”
arXiv, Dec. 27, (2022). Accessed: Jun. 10, 2023. [Online]. Available:
http://arxiv.org/abs/2212.13647

[5] S. Chandrasekar, R. Dakshinamurthy, P. G. Seshakumar, P. Balasundaram, and C.
Babu, A novel indexing scheme for efficient handling of small files in Hadoop
Distributed File System. (2013), p. 8. doi: 10.1109/ICCCI.2013.6466147.

[6] V. Rao Chandakanna, “REHDFS: A random read/write enhanced HDFS,” Journal of
Network and Computer Applications, vol. 103, pp. 85–100, Feb. (2018), doi:

8

E3S Web of Conferences 412, 01091 (2023)
ICIES’11 2023

https://doi.org/10.1051/e3sconf/202341201091

10.1016/j.jnca.2017.11.017.

[7] B. Mao, H. Jiang, S. Wu, Y. Fu, and L. Tian, “Read-Performance Optimization for
Deduplication-Based Storage Systems in the Cloud,” ACM Transactions on Storage
(TOS), vol. 10, Mar. (2014), doi: 10.1145/2512348.

[8] Liu Jiang, Bing Li, and Meina Song, “THE optimization of HDFS based on small
files,” in 2010 3rd IEEE International Conference on Broadband Network and
Multimedia Technology (IC-BNMT), Beijing, China: IEEE, Oct. (2010), pp. 912–
915. doi: 10.1109/ICBNMT.2010.5705223.

[9] N. Verstaevel, J. Boes, J. Nigon, D. d’Amico, and M.-P. Gleizes, Lifelong Machine
Learning with Adaptive Multi-Agent Systems. (2017). doi:
10.5220/0006247302750286.

[10] M. Guériau, F. Armetta, S. Hassas, R. Billot, and N.-E. E. Faouzi, “A constructivist
approach for a self-adaptive decision-making system: application to road traffic
control,” presented at the 28th IEEE International Conference on Tools with
Artificial Intelligence (ICTAI), Nov. (2016), p. 670. doi: 10.1109/ICTAI.2016.0107.

[11] S. Shamraj and P. J. Kulkarni, “Data Access Monitoring and Replication Control
Management System for HDFS Clusters,” in 2018 3rd IEEE International
Conference on Recent Trends in Electronics, Information & Communication
Technology (RTEICT), Bangalore, India: IEEE, May (2018), pp. 2342–2345. doi:
10.1109/RTEICT42901.2018.9012567.

[12] R. Subramanyam, “HDFS Heterogeneous Storage Resource Management Based on
Data Temperature,” in 2015 International Conference on Cloud and Autonomic
Computing, Boston, MA, USA: IEEE, Sep. (2015), pp. 232–235. doi:
10.1109/ICCAC.2015.33.

[13] R. Kaushik, T. Abdelzaher, R. Egashira, and K. Nahrstedt, “Predictive data and
energy management in GreenHDFS,” Jul. (2011), doi:
10.1109/IGCC.2011.6008563.

[14] Z. Cheng et al., ERMS: An elastic replication management system for HDFS.
(2012), p. 40. doi: 10.1109/ClusterW.2012.25.

[15] R. Sanchez, “A Multi agent Simulation Framework on Small Hadoop Clusters”,
Accessed: Jun. 10, (2023). [Online]. Available:
https://www.academia.edu/19597670/A_Multi_agent_Simulation_Framework_on_S
mall_Hadoop_Clusters

[16] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop Distributed File
System,” in 2010 IEEE 26th Symposium on Mass Storage Systems and
Technologies (MSST), May (2010), pp. 1–10. doi: 10.1109/MSST.2010.5496972.

[17] Y. Tian and X. Yu, “Trustworthiness study of HDFS data storage based on
trustworthiness metrics and KMS encryption,” in 2021 IEEE International
Conference on Power Electronics, Computer Applications (ICPECA), Shenyang,
China: IEEE, Jan. (2022), pp. 962–966. doi: 10.1109/ICPECA51329.2021.9362537.

[18] M. Sais, N. Rafalia, and J. Abouchabaka, “Intelligent Approaches to Optimizing Big
Data Storage and Management: REHDFS system and DNA Storage,” Procedia
Computer Science, vol. 201, pp. 746–751, Jan. (2022), doi:
10.1016/j.procs.2022.03.101.

9

E3S Web of Conferences 412, 01091 (2023)
ICIES’11 2023

https://doi.org/10.1051/e3sconf/202341201091

