

Creation of column-oriented NoSQL databases

automatically in Big Data environments and its impact on

energy consumption.

Fouad ELOTMANI
1
, Redouane ESBAI1, and Mohamed ATOUNTI1

1University Mohammad Premier, Oujda, Morocco

Abstract. This study investigates the automatic creation of column-

oriented NoSQL databases in Big Data environments and their impact on

energy consumption. Traditional row-oriented databases face limitations

in handling large volumes of data, resulting in slower query response

times and energy inefficiencies. In contrast, column-oriented NoSQL

databases store data in columns, enabling efficient compression, retrieval,

and query processing. Innovative techniques are employed to

automatically create these databases, optimizing performance and

minimizing manual intervention. Storing data in a columnar format

reduces storage requirements and power consumption while improving

data locality and reducing I/O operations. This study emphasizes the

benefits of adopting column-oriented NoSQL databases, including

improved performance, scalability, and energy efficiency in Big Data

environments.

Index Terms— Big DATA, SQL relational database, NoSQL, energy efficiency, The
transformation rules, BigData, CQL

1 Introduction

As the scale and complexity of Big Data continue to expand rapidly, efficient data

management strategies are crucial to ensure optimal performance and reduced energy

consumption. This study focuses on the automatic creation of column-oriented NoSQL

databases in Big Data environments and explores their potential impact on energy

consumption. Traditional row-oriented databases face limitations when handling vast

volumes of data due to their inherent structure, leading to increased query response times

and energy inefficiencies. In contrast, column-oriented NoSQL databases leverage a unique

data organization approach, storing data in columnar fashion rather than traditional row-

wise manner[1].

Big data will play a crucial role in facilitating the implementation of the Global Energy

Internet (GEI). Firstly, the GEI entails a vast array of measurements, monitoring devices,

and control systems, resulting in the generation of substantial data throughout the entire

energy production, transmission, transaction, and consumption processes. Additionally, the

GEI necessitates extensive data mining due to its reliance on renewable energy sources and

E3S Web of Conferences 412, 01108 (2023)
ICIES’11 2023

https://doi.org/10.1051/e3sconf/202341201108

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons

Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/).

1

the active participation of consumers. Given the uncertainties and complexities associated

with the GEI, traditional physical model-based approaches are inadequate. In contrast, big

data analytics, as a data-driven methodology, proves highly effective. By leveraging big

data analysis, scientific predictions can be made regarding all aspects of energy production,

distribution, transformation, and consumption. This approach enables both decentralized

and centralized coordination of energy management, while also facilitating the

identification of potential risks at each stage.

The automated creation process optimizes database performance and minimizes

manual intervention, ensuring faster deployment and reducing the burden on data

management teams. The impact of utilizing column-oriented NoSQL databases on energy

consumption is a key aspect of this study. By storing data in a columnar format, these

databases can enhance energy efficiency in several ways. Firstly, the columnar data

organization enables efficient data compression techniques, resulting in reduced storage

requirements and lower power consumption. Secondly, the query execution process

benefits from improved data locality and reduced I/O operations, which contribute to

decreased energy usage. These combined effects can lead to significant energy savings in

Big Data environments[2]. The findings of this study provide valuable insights into the

benefits of automatically creating column-oriented NoSQL databases in Big Data

environments. The adoption of such databases can contribute to improved performance,

enhanced scalability, and reduced energy consumption. As organizations strive to optimize

their data management processes while minimizing environmental impact, the automatic

creation of column-oriented NoSQL databases emerges as a promising approach in the era

of Big Data[3].

This paper provides an overview of the methods used to transform from a UML class

diagram model to the column-oriented NoSQL database, referred to as MDA approach[4].

First, the related works are discussed in the second section. The third section provides an

explanation of the MDA approach, followed by the fourth section which examines the

structure of NoSQL databases, of which column-oriented is one. Afterwards, in the fifth

section, the source and target meta-models are presented. The sixth section focuses on the

transformation process from UML class diagram model to the column-oriented NoSQL

database, which is demonstrated by both model-to-model (M2M) and model-to-text (M2T)

transformation. Finally, the last section summarizes the paper and presents possible further

directions of the research.

2 Related works

Recent years have seen a surge in research on MDA (Model-driven Architecture) and

the process of transforming traditional relational databases into a NoSQL model. The most

relevant are : [6-9]:

This paper [5]evaluates the energy efficiency of NoSQL databases, specifically

MongoDB and Apache Cassandra, in Big Data applications. It presents experimental results

and discusses the impact of different factors on energy consumption.

This paper[6] investigates the energy consumption of NoSQL databases, including

MongoDB, Cassandra, and HBase, in Big Data environments. It presents a comparative

study and analyzes the energy efficiency of these databases.

E3S Web of Conferences 412, 01108 (2023)
ICIES’11 2023

https://doi.org/10.1051/e3sconf/202341201108

2

This paper [7]proposes an energy-efficient NoSQL data management framework for

Big Data workloads. It introduces techniques such as workload-aware data partitioning and

consolidation to reduce energy consumption. Experimental results demonstrate the

effectiveness of the proposed framework.

This research[8] investigates energy-efficient backup and recovery mechanisms

specifically designed for column-oriented NoSQL databases. The authors propose a novel

approach that intelligently schedules backup operations based on energy availability and

workload patterns, reducing energy consumption during data backup and recovery

processes.

This article[9] highlights the increasing development of the Internet of Things (IoT)

and big data, which has led to the adoption of non-relational (NoSQL) databases to address

workload complexity and scalability issues. However, the performance, scalability, and

availability of NoSQL databases face challenges as workloads grow. Energy consumption

by NoSQL databases has become a concern due to rising energy costs and environmental

sustainability. Despite NoSQL's popularity, there is limited understanding of its energy

footprint, and comprehensive studies analyzing energy consumption are lacking. This

article presents a comprehensive survey on energy consumption analysis of NoSQL and

discusses the limited proposals to reduce energy consumption. It also outlines research

opportunities for improving energy conservation in NoSQL systems.

3 Column-Oriented NoSQL Database

Column-oriented NoSQL databases are a type of database system that store and manage

data in a columnar format. Unlike traditional relational databases, which organize data in

rows, column-oriented databases store data vertically, with each column stored separately.

This allows for efficient storage and retrieval of specific columns, making them ideal for

analytical workloads and data-intensive application[10].

In a column-oriented NoSQL database, data is grouped together based on column values

rather than individual rows. This design provides advantages for analytical queries that

typically involve aggregating data from specific columns. By storing data in a columnar

format, these databases can perform operations like data filtering, aggregation, and

compression more efficiently, resulting in faster query execution times[11].

The column-oriented approach offers several benefits, including improved data

compression, as columnar storage allows for better compression ratios compared to row-

oriented databases. This leads to reduced storage requirements and potentially lower costs.

Additionally, column-oriented NoSQL databases can provide high performance for read-

heavy workloads, as retrieving specific columns can be done more efficiently, even when

dealing with large volumes of data[12].

Another advantage of column-oriented NoSQL databases is their suitability for big data

analytics. With the increasing volume and complexity of data, these databases excel at

handling large-scale analytical queries by leveraging distributed computing architectures

E3S Web of Conferences 412, 01108 (2023)
ICIES’11 2023

https://doi.org/10.1051/e3sconf/202341201108

3

and parallel processing. They can scale horizontally by adding more nodes to the system,

accommodating the growing demands of data-intensive applications.

Overall, column-oriented NoSQL databases offer a specialized approach to data storage and

retrieval, optimizing performance for analytical workloads and data-intensive applications.

By leveraging columnar storage, these databases provide efficient data compression, faster

query execution, and scalability for handling big data analytics[13].

In this paper, the focus is on the principal aspects of a column-oriented database such

as Cassandra. Cassandra is a partitioned row store, which means that it can distribute data

across multiple machines. Rows are organized into tables with a required primary key. This

is different from a table-based relational database in that one can omit columns, or add

arbitrary columns at any time[14].

4 Source and Target Meta-Models

We opted for the modeling and template approaches for our MDA approach to

generate a column-oriented NoSQL database. These approaches involve the use of two

meta-models; a source meta-model and a target meta-model. In this section, we present the

various meta-classes which form the UML class diagram, the source meta-model, and the

column-oriented NoSQL target meta-model.

4.1 UML source Meta-model

The figure 1 outlines a simplified UML source meta-model based on packages that

consist of data types and classes. These classes are comprised of properties that are marked

by multiplicities (lower and upper bounds), and they also include operations that have typed

parameters.

Fig. 1. Simplified UML source meta-model

E3S Web of Conferences 412, 01108 (2023)
ICIES’11 2023

https://doi.org/10.1051/e3sconf/202341201108

4

4.2 Column-Oriented target meta-model

Fig. 2. Simplified column-oriented target meta-model

The database is stored in a single Keyspace by default, which is composed of column-

families. Every column-family has its own distinct identifier, known as "PrimaryKey", and

consists of a set of columns or super-columns that must be declared when the schema is

created.

5 The Process of Transforming UML Source Model to column-

oriented target code

In order to create the column-oriented database, we first developed ECORE models

that correspond with our source and target meta-models. This required multiple model

transformations. Our implementation of the M2M transformation algorithm (see section

6.1was) done using the QVT Operational Mappings language. Afterwards, we used the

Acceleo[15] language for the second M2T transformation.

5.1 The Transformation Rules M2M

The SQL to UML transformation uses a UML type model as an input, and produces a

column-oriented database model in output.The first transformation rule maps the UML

package elements to the Keyspace type elements of the column-oriented database. The

second rule transforms each UML class and association into a family of columns, creating

E3S Web of Conferences 412, 01108 (2023)
ICIES’11 2023

https://doi.org/10.1051/e3sconf/202341201108

5

columns and referential links for each column-family. This involves transforming each

class property into a column, making sure to assign names and types to the various

columns.

Fig. 3. M2M transformation with QVT From UML to NoSQL model

5.2 The Transformation Rules M2T

The transformation from model to code for the development of a column-oriented

database like Cassandra is doable with the Acceleo transformation language. Generally, it

does not pose any challenges in terms of implementation, as it simply involves writing the

transformation rules in a text file. With the help of this language and the text file, one can

easily create the desired code for the database.

E3S Web of Conferences 412, 01108 (2023)
ICIES’11 2023

https://doi.org/10.1051/e3sconf/202341201108

6

Fig. 4. M2T transformation with Acceleo to Generate a CQL code

5.3 Result

In order to validate our conversion rules, we performed several tests.

As an example, we consider a class diagram consisting of Department, Employee, and

City classes (see Figure 5).

Fig. 5. UML source model: Class diagram EMF model and Class diagram instance model

After applying the transformation to the UML source model, we generated a column-

oriented PSM target model (see Figure 6).

E3S Web of Conferences 412, 01108 (2023)
ICIES’11 2023

https://doi.org/10.1051/e3sconf/202341201108

7

Fig. 6. Column-Oriented Cassandra PSM: Resource Set and their Properties

6 Conclusion and perspectives

the implementation of column-oriented NoSQL databases in Big Data environments

has a significant impact on energy consumption. These databases offer efficient data

storage and retrieval, reducing the amount of data accessed and processed during queries.

This targeted retrieval approach improves energy efficiency and allows for faster data

analysis. The scalability and flexibility of column-oriented databases also contribute to

reduced hardware requirements and energy consumption. Overall, utilizing these databases

in Big Data environments leads to lower energy consumption, improved performance, and

enhanced sustainability in energy systems.

 References

[1] A. Arif, T. A. Alghamdi, Z. A. Khan, and N. Javaid, “Towards Efficient

Energy Utilization Using Big Data Analytics in Smart Cities for Electricity

Theft Detection,” Big Data Res., vol. 27, p. 100285, Feb. 2022, doi:

10.1016/j.bdr.2021.100285.

[2] H. Liao, E. Michalenko, and S. C. Vegunta, “Review of Big Data Analytics

for Smart Electrical Energy Systems,” Energies, vol. 16, no. 8, p. 3581,

Apr. 2023, doi: 10.3390/en16083581.

[3] O. Alotaibi and E. Pardede, “Transformation of Schema from Relational

Database (RDB) to NoSQL Databases,” Data, vol. 4, no. 4, p. 148, Nov.

2019, doi: 10.3390/data4040148.

[4] J. Xie, F. Xu, Z. Li, and X. Li, “Data Mining Method under Model-Driven

Architecture (MDA),” Secur. Commun. Networks, vol. 2022, pp. 1–10, Mar.

2022, doi: 10.1155/2022/5806829.

[5] D. Mahajan, C. Blakeney, and Z. Zong, “Improving the energy efficiency of

relational and NoSQL databases via query optimizations,” Sustain. Comput.

Informatics Syst., vol. 22, pp. 120–133, Jun. 2019, doi:

E3S Web of Conferences 412, 01108 (2023)
ICIES’11 2023

https://doi.org/10.1051/e3sconf/202341201108

8

10.1016/j.suscom.2019.01.017.

[6] T. Li, G. Yu, X. Liu, and J. Song, “Analyzing the Waiting Energy

Consumption of NoSQL Databases,” in 2014 IEEE 12th International

Conference on Dependable, Autonomic and Secure Computing, 2014, pp.

277–282, doi: 10.1109/DASC.2014.56.

[7] F. Mehdipour, H. Noori, and B. Javadi, “Energy-Efficient Big Data

Analytics in Datacenters,” 2016, pp. 59–101.

[8] A. H. Abed, “Recovery and Concurrency Challenging in Big Data and

NoSQL Database Systems,” Int. J. Adv. Netw. Appl., vol. 11, no. 04, pp.

4321–4329, 2020, doi: 10.35444/IJANA.2020.11041.

[9] M. Shah, A. Kothari, and S. Patel, “A Comprehensive Survey on Energy

Consumption Analysis for NoSQL,” Scalable Comput. Pract. Exp., vol. 23,

no. 1, pp. 35–50, Apr. 2022, doi: 10.12694/scpe.v23i1.1971.

[10] N. Shehata and A. H. Abed, “Big Data With Column Oriented NOSQL

Database To Overcome The Drawbacks Of Relational Databases,” Int. J.

Adv. Netw. Appl., vol. 11, no. 05, pp. 4423–4428, 2020, doi:

10.35444/IJANA.2020.11057.

[11] M. J. Suárez-Cabal, P. Suárez-Otero, C. de la Riva, and J. Tuya, “MDICA:

Maintenance of data integrity in column-oriented database applications,”

Comput. Stand. Interfaces, vol. 83, p. 103642, Jan. 2023, doi:

10.1016/j.csi.2022.103642.

[12] A. Hillenbrand, U. Storl, M. Levchenko, S. Nabiyev, and M. Klettke,

“Towards Self-Adapting Data Migration in the Context of Schema

Evolution in NoSQL Databases,” in 2020 IEEE 36th International

Conference on Data Engineering Workshops (ICDEW), 2020, pp. 133–138,

doi: 10.1109/ICDEW49219.2020.00013.

[13] S. Bjeladinovic, Z. Marjanovic, and S. Babarogic, “A proposal of

architecture for integration and uniform use of hybrid SQL/NoSQL

database components,” J. Syst. Softw., vol. 168, p. 110633, Oct. 2020, doi:

10.1016/j.jss.2020.110633.

[14] T. Fouad and B. Mohamed, “Model Transformation From Object Relational

Database to NoSQL Column Based Database,” in Proceedings of the 3rd

International Conference on Networking, Information Systems & Security,

2020, pp. 1–5, doi: 10.1145/3386723.3387881.

[15] “acceleo.” [Online]. Available: https://www.eclipse.org/acceleo/.

E3S Web of Conferences 412, 01108 (2023)
ICIES’11 2023

https://doi.org/10.1051/e3sconf/202341201108

9

