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Abstract. This study investigates the automatic creation of column-

oriented NoSQL databases in Big Data environments and their impact on 

energy consumption. Traditional row-oriented databases face limitations 

in handling large volumes of data, resulting in slower query response 

times and energy inefficiencies. In contrast, column-oriented NoSQL 

databases store data in columns, enabling efficient compression, retrieval, 

and query processing. Innovative techniques are employed to 

automatically create these databases, optimizing performance and 

minimizing manual intervention. Storing data in a columnar format 

reduces storage requirements and power consumption while improving 

data locality and reducing I/O operations. This study emphasizes the 

benefits of adopting column-oriented NoSQL databases, including 

improved performance, scalability, and energy efficiency in Big Data 

environments. 

 

 
Index Terms— Big DATA, SQL relational database, NoSQL, energy efficiency, The 
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1 Introduction 

As the scale and complexity of Big Data continue to expand rapidly, efficient data 

management strategies are crucial to ensure optimal performance and reduced energy 

consumption. This study focuses on the automatic creation of column-oriented NoSQL 

databases in Big Data environments and explores their potential impact on energy 

consumption. Traditional row-oriented databases face limitations when handling vast 

volumes of data due to their inherent structure, leading to increased query response times 

and energy inefficiencies. In contrast, column-oriented NoSQL databases leverage a unique 

data organization approach, storing data in columnar fashion rather than traditional row-

wise manner[1].  

Big data will play a crucial role in facilitating the implementation of the Global Energy 

Internet (GEI). Firstly, the GEI entails a vast array of measurements, monitoring devices, 

and control systems, resulting in the generation of substantial data throughout the entire 

energy production, transmission, transaction, and consumption processes. Additionally, the 

GEI necessitates extensive data mining due to its reliance on renewable energy sources and 
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the active participation of consumers. Given the uncertainties and complexities associated 

with the GEI, traditional physical model-based approaches are inadequate. In contrast, big 

data analytics, as a data-driven methodology, proves highly effective. By leveraging big 

data analysis, scientific predictions can be made regarding all aspects of energy production, 

distribution, transformation, and consumption. This approach enables both decentralized 

and centralized coordination of energy management, while also facilitating the 

identification of potential risks at each stage. 

The automated creation process optimizes database performance and minimizes 

manual intervention, ensuring faster deployment and reducing the burden on data 

management teams. The impact of utilizing column-oriented NoSQL databases on energy 

consumption is a key aspect of this study. By storing data in a columnar format, these 

databases can enhance energy efficiency in several ways. Firstly, the columnar data 

organization enables efficient data compression techniques, resulting in reduced storage 

requirements and lower power consumption. Secondly, the query execution process 

benefits from improved data locality and reduced I/O operations, which contribute to 

decreased energy usage. These combined effects can lead to significant energy savings in 

Big Data environments[2]. The findings of this study provide valuable insights into the 

benefits of automatically creating column-oriented NoSQL databases in Big Data 

environments. The adoption of such databases can contribute to improved performance, 

enhanced scalability, and reduced energy consumption. As organizations strive to optimize 

their data management processes while minimizing environmental impact, the automatic 

creation of column-oriented NoSQL databases emerges as a promising approach in the era 

of Big Data[3]. 

 

This paper provides an overview of the methods used to transform from a UML class 

diagram model to the column-oriented NoSQL database, referred to as MDA approach[4]. 

First, the related works are discussed in the second section. The third section provides an 

explanation of the MDA approach, followed by the fourth section which examines the 

structure of NoSQL databases, of which column-oriented is one. Afterwards, in the fifth 

section, the source and target meta-models are presented. The sixth section focuses on the 

transformation process from UML class diagram model to the column-oriented NoSQL 

database, which is demonstrated by both model-to-model (M2M) and model-to-text (M2T) 

transformation. Finally, the last section summarizes the paper and presents possible further 

directions of the research. 

 

2 Related works 

Recent years have seen a surge in research on MDA (Model-driven Architecture) and 

the process of transforming traditional relational databases into a NoSQL model. The most 

relevant are : [6-9]:  

 

 

This paper [5]evaluates the energy efficiency of NoSQL databases, specifically 

MongoDB and Apache Cassandra, in Big Data applications. It presents experimental results 

and discusses the impact of different factors on energy consumption. 

 

This paper[6] investigates the energy consumption of NoSQL databases, including 

MongoDB, Cassandra, and HBase, in Big Data environments. It presents a comparative 

study and analyzes the energy efficiency of these databases. 
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This paper [7]proposes an energy-efficient NoSQL data management framework for 

Big Data workloads. It introduces techniques such as workload-aware data partitioning and 

consolidation to reduce energy consumption. Experimental results demonstrate the 

effectiveness of the proposed framework. 

 

This research[8] investigates energy-efficient backup and recovery mechanisms 

specifically designed for column-oriented NoSQL databases. The authors propose a novel 

approach that intelligently schedules backup operations based on energy availability and 

workload patterns, reducing energy consumption during data backup and recovery 

processes. 

 

This article[9] highlights the increasing development of the Internet of Things (IoT) 

and big data, which has led to the adoption of non-relational (NoSQL) databases to address 

workload complexity and scalability issues. However, the performance, scalability, and 

availability of NoSQL databases face challenges as workloads grow. Energy consumption 

by NoSQL databases has become a concern due to rising energy costs and environmental 

sustainability. Despite NoSQL's popularity, there is limited understanding of its energy 

footprint, and comprehensive studies analyzing energy consumption are lacking. This 

article presents a comprehensive survey on energy consumption analysis of NoSQL and 

discusses the limited proposals to reduce energy consumption. It also outlines research 

opportunities for improving energy conservation in NoSQL systems. 

 

3 Column-Oriented NoSQL Database 

 

Column-oriented NoSQL databases are a type of database system that store and manage 

data in a columnar format. Unlike traditional relational databases, which organize data in 

rows, column-oriented databases store data vertically, with each column stored separately. 

This allows for efficient storage and retrieval of specific columns, making them ideal for 

analytical workloads and data-intensive application[10]. 

 

In a column-oriented NoSQL database, data is grouped together based on column values 

rather than individual rows. This design provides advantages for analytical queries that 

typically involve aggregating data from specific columns. By storing data in a columnar 

format, these databases can perform operations like data filtering, aggregation, and 

compression more efficiently, resulting in faster query execution times[11]. 

 

The column-oriented approach offers several benefits, including improved data 

compression, as columnar storage allows for better compression ratios compared to row-

oriented databases. This leads to reduced storage requirements and potentially lower costs. 

Additionally, column-oriented NoSQL databases can provide high performance for read-

heavy workloads, as retrieving specific columns can be done more efficiently, even when 

dealing with large volumes of data[12]. 

 

Another advantage of column-oriented NoSQL databases is their suitability for big data 

analytics. With the increasing volume and complexity of data, these databases excel at 

handling large-scale analytical queries by leveraging distributed computing architectures 
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and parallel processing. They can scale horizontally by adding more nodes to the system, 

accommodating the growing demands of data-intensive applications. 

 

Overall, column-oriented NoSQL databases offer a specialized approach to data storage and 

retrieval, optimizing performance for analytical workloads and data-intensive applications. 

By leveraging columnar storage, these databases provide efficient data compression, faster 

query execution, and scalability for handling big data analytics[13]. 

 

In this paper, the focus is on the principal aspects of a column-oriented database such 

as Cassandra. Cassandra is a partitioned row store, which means that it can distribute data 

across multiple machines. Rows are organized into tables with a required primary key. This 

is different from a table-based relational database in that one can omit columns, or add 

arbitrary columns at any time[14]. 

 

4 Source and Target Meta-Models 

We opted for the modeling and template approaches for our MDA approach to 

generate a column-oriented NoSQL database. These approaches involve the use of two 

meta-models; a source meta-model and a target meta-model. In this section, we present the 

various meta-classes which form the UML class diagram, the source meta-model, and the 

column-oriented NoSQL target meta-model. 

4.1 UML source Meta-model 

The figure 1 outlines a simplified UML source meta-model based on packages that 

consist of data types and classes. These classes are comprised of properties that are marked 

by multiplicities (lower and upper bounds), and they also include operations that have typed 

parameters. 

 

Fig. 1. Simplified UML source meta-model 
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4.2 Column-Oriented target meta-model 

 

Fig. 2. Simplified column-oriented target meta-model 

 
The database is stored in a single Keyspace by default, which is composed of column-

families. Every column-family has its own distinct identifier, known as "PrimaryKey", and 

consists of a set of columns or super-columns that must be declared when the schema is 

created. 

5 The Process of Transforming UML Source Model to column-

oriented target code 

In order to create the column-oriented database, we first developed ECORE models 

that correspond with our source and target meta-models. This required multiple model 

transformations. Our implementation of the M2M transformation algorithm (see section 

6.1was) done using the QVT Operational Mappings language. Afterwards, we used the 

Acceleo[15] language for the second M2T transformation. 

 

5.1 The Transformation Rules M2M 

 
The SQL to UML transformation uses a UML type model as an input, and produces a 

column-oriented database model in output.The first transformation rule maps the UML 

package elements to the Keyspace type elements of the column-oriented database. The 

second rule transforms each UML class and association into a family of columns, creating 
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columns and referential links for each column-family. This involves transforming each 

class property into a column, making sure to assign names and types to the various 

columns. 

 

Fig. 3. M2M transformation with QVT From UML to NoSQL model 

5.2 The Transformation Rules M2T 

The transformation from model to code for the development of a column-oriented 

database like Cassandra is doable with the Acceleo transformation language. Generally, it 

does not pose any challenges in terms of implementation, as it simply involves writing the 

transformation rules in a text file. With the help of this language and the text file, one can 

easily create the desired code for the database. 
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Fig. 4. M2T transformation with Acceleo to Generate a CQL code 

5.3 Result 

In order to validate our conversion rules, we performed several tests. 

As an example, we consider a class diagram consisting of Department, Employee, and 

City classes (see Figure 5). 

 

Fig. 5. UML source model: Class diagram EMF model and Class diagram instance model  

After applying the transformation to the UML source model, we generated a column-

oriented PSM target model (see Figure 6). 
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Fig. 6. Column-Oriented Cassandra PSM: Resource Set and their Properties 

6 Conclusion and perspectives 

the implementation of column-oriented NoSQL databases in Big Data environments 

has a significant impact on energy consumption. These databases offer efficient data 

storage and retrieval, reducing the amount of data accessed and processed during queries. 

This targeted retrieval approach improves energy efficiency and allows for faster data 

analysis. The scalability and flexibility of column-oriented databases also contribute to 

reduced hardware requirements and energy consumption. Overall, utilizing these databases 

in Big Data environments leads to lower energy consumption, improved performance, and 

enhanced sustainability in energy systems. 
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