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Abstract. Industrial poultry farming can satisfy the population's need for 
meat up to 98%, and for eggs – 92%. With the growth of world production 
of poultry products, the volume of hatchery waste also increases, because 
the hatched cockerel chicks are destroyed after incubation due to the 
inefficiency of their further cultivation (more than 7 billion). Determination 
of the sex of the embryo in the egg before incubation will significantly 
reduce the cost of egg production and the environmental burden from the 
activities of poultry farms. Within the framework of this article, the tasks of 
developing models for determining the sex of an embryo in a bird egg before 
incubation using machine learning (ML) methods are solved. During the first 
experiment, the identifiability of each of the samples was checked by the 
ML methods. During the second experiment, using various methods 
(decision trees, random forests, adaptive boosting, logistic regression and 
support vectors), a preliminary set of models was obtained. The third 
experiment ended with the formation of the resulting set of features and 
obtaining the final ML model. This made it possible to determine the sex of 
the embryo using 16 geometric parameters of the egg with an acceptable 
level of accuracy.  

1 Introduction 
Poultry farming is one of the developed traditional livestock industries in the world, because 
it provides food security for the inhabitants of many countries [1]. 

For example, the industrial poultry farming of domestic chickens can satisfy the 
population's need for meat up to 98%, and for eggs – 92% [2]. Indeed, the global production 
of poultry meat is about 140 million tons [3]. The intensification of the production of broilers, 
to obtain meat, and laying hens, to obtain a dietary product – eggs, has a significant impact 
not only on human health, but also on the environment [4].  

As global poultry production grows, so does the amount of hatchery waste. There is a 
growing amount of egg shells and fluff, infertile eggs, dead embryos, culled chickens, 
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embryonic fluid, as well as wastewater obtained during the cleaning and disinfection of 
equipment and growing areas [3].  

Due to the gender orientation of poultry production, every year in the world more than 
7.0 billion one-day-old males are subject to destruction by barbaric methods – by maceration 
and suffocation in a carbon dioxide environment [6].  

In 2018, the company «In Ovo» introduced the commercial robotic invasive technology 
Ella for sex determination in eggs in many European countries [7].  

However, this technology is invasive, complex and expensive to implement.  
Numerous attempts to determine sexual dimorphism based on egg shape coefficient or 

index have also not been successful [8].  
Determination of the sex of the embryo in the egg before incubation is an unresolved 

world problem [7, 8]. The solution to this problem will not only remove ethical problems in 
society, but will significantly reduce the costs of egg production and environmental stress 
from the activities of poultry farms. 

In our work, we develop a hypothesis about the different nature of the asymmetry of egg 
shape parameters in male and female embryos in a freshly laid egg of poultry [7], as well as 
the possibility of determining sexual dimorphism in it before incubation using modern ML.  

2 Materials, data and methods 

2.1 Data description 

The experimental batch of samples consisted of 80 eggs of the Hisex White cross. Out of 
these, 38 chicks successfully hatched from the incubation process. The genders of the chicks 
were determined through visual inspection, resulting in the identification of 24 roosters and 
14 hens.  

Thus, the original samples were based on the characteristics of 38 egg images, for which 
the gender of the chick was identified with a certain level of confidence. These images were 
utilized to form a set of numerical geometric characteristics that were obtained through the 
processing and analysis of the source images using computer vision techniques and the 
specifically designed program. The original dataset consisted of 38 samples; each described 
by 93 features obtained using various image processing methods.  

To build models empirically, a statistical analysis was conducted to test hypotheses about 
the differences in means for the studied groups.  

However, the use of statistical analysis did not produce the expected results.  
Therefore, a decision was made to investigate the applicability of machine learning 

methods for obtaining models that can determine the gender of a chick based on the geometric 
characteristics of the egg and identification of the most informative features. 

When building models, the set of features obtained from various image processing 
methods were grouped into the several distinct categories: 

 G01 (6 features) Basic characteristics: mass, perimeter, area, longitudinal and 
transverse dimensions, and overall shape index; 

 G02 (11 features) Shape index based on segmental transverse and longitudinal 
dimensions; 

Characteristics of the radius-vectors drawn from the center of the object to the contour 
boundary: 

 G03 (36 features) Vector length by segment; 
 G04 (18 features) Length ratio at an angle of 180 degrees; 
 G05 (18 features) Length ratio at an angle of 90 degrees; 

Characteristics of the completed image: 
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In our work, we develop a hypothesis about the different nature of the asymmetry of egg
shape parameters in male and female embryos in a freshly laid egg of poultry [7], as well as 
the possibility of determining sexual dimorphism in it before incubation using modern ML. 

2 Materials, data and methods 

2.1 Data description

The experimental batch of samples consisted of 80 eggs of the Hisex White cross. Out of
these, 38 chicks successfully hatched from the incubation process. The genders of the chicks
were determined through visual inspection, resulting in the identification of 24 roosters and 
14 hens.

Thus, the original samples were based on the characteristics of 38 egg images, for which 
the gender of the chick was identified with a certain level of confidence. These images were 
utilized to form a set of numerical geometric characteristics that were obtained through the
processing and analysis of the source images using computer vision techniques and the 
specifically designed program. The original dataset consisted of 38 samples; each described 
by 93 features obtained using various image processing methods.

To build models empirically, a statistical analysis was conducted to test hypotheses about
the differences in means for the studied groups.

However, the use of statistical analysis did not produce the expected results.  
Therefore, a decision was made to investigate the applicability of machine learning

methods for obtaining models that can determine the gender of a chick based on the geometric 
characteristics of the egg and identification of the most informative features.

When building models, the set of features obtained from various image processing
methods were grouped into the several distinct categories:

 G01 (6 features) Basic characteristics: mass, perimeter, area, longitudinal and 
transverse dimensions, and overall shape index;

 G02 (11 features) Shape index based on segmental transverse and longitudinal
dimensions;

Characteristics of the radius-vectors drawn from the center of the object to the contour 
boundary:

 G03 (36 features) Vector length by segment;
 G04 (18 features) Length ratio at an angle of 180 degrees;
 G05 (18 features) Length ratio at an angle of 90 degrees;

Characteristics of the completed image:

 G06 (16 features) – Group 1: area, perimeter; 
 G07 (8 features) – Group 2: with the use of an inscribed circle; 
 G08 (12 features) – Group 3: averaged characteristics; 
 G09 (4 features) Calculated volume; 
 G10 (93 features) Combination of groups G01-G09; 
 G11 (53 features) Combination of groups G01-G03. 

2.2 Methods, ML algorithms and tools used 

Different machine learning algorithms were used to build the models such as decision trees, 
random forests, adaptive boosting, logistic regression, and support vector machines (SVM) 
for classification using the following configurations: 

 M01: Decision Tree Classifier with max depth 3; 
 M02: Decision Tree Classifier with max depth 5; 
 M03: Random Forest Classifier with 4 estimators and max depth 3; 
 M04: Random Forest Classifier with 10 estimators and max depth 5; 
 M05: AdaBoost Classifier with 4 Decision Tree estimators and max depth 3; 
 M06: Support Vector Classifier with "RBF" kernel; 
 M07: Support Vector Classifier with "Linear" kernel; 
 M08: Logistic regression with L2 regularization. 

The Python programming language was utilized for data processing and analysis. The 
scikit-learn library was selected to implement the listed algorithms for machine learning 
models creation and training.  

The Orange 3 program with a graphical user interface was used to build the models. 
For evaluating the model's metrics, a cross-validation approach was employed in two 

different variations [9].  
At the initial stage of the work, a leave-one-out control method was utilized, where the 

testing subset consisted of a single sample (k=1), and the number of divisions and models 
were equivalent to the number of samples (N=38). 

In the model building and selection phase, a K-fold control method was implemented 
with K=3 partitions and averaging of the results.  

The advantage of using cross-validation is that it allows for a more robust evaluation of 
the model's performance, as it tests the model's ability to generalize to new data that was not 
seen during training. This helps prevent overfitting, where the model performs well on the 
training data but poorly on new data.  

Thus, cross-validation can provide a more accurate estimate of a model's performance 
and make it more reliable for practical use.  

Among the numerous metrics available to evaluate classification models [10], this study 
utilized the AUC ROC (area under the receiver operating characteristic curve) and F1-
measure. F1-measure is computed as the harmonic mean of precision and recall, providing 
equal weighting to both precision and recall. 

3 Experiments 
The versatility of the task at hand necessitated a series of experiments, each of which yielded 
the desired result.  

During the first experiment, we tested the identifiability of each sample using machine 
learning methods.  

The second experiment involved the use of various machine learning algorithms, which 
led to the creation of a preliminary set of models.  
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In the third and final experiment, we formed a resulting set of features and successfully 
obtained the final machine learning model.  

Let us take a closer look at the progress of each of the conducted experiments. 

3.1 Identifiability check 

For datasets with small sample sizes, errors in data collection can have a significant impact 
on the final results.  

In order to study the identifiability of objects from the original sample using machine 
learning models, the Leave-One-Out method was used with the application of ML algorithms 
M01-M06 for G01-G10 feature groups.  

In the end, a total of 38×10×6 models were built, and the experiment's results are 
presented in Figure 1 as a heat map.  

Each cell of heat map shows the total number of correct conclusions out of 6 models 
obtained using different machine learning algorithms for an individual sample. 

Fig. 1. Heat map displaying the result of the first experiment (R – Rooster, H – Hen). 

Upon analyzing the heat map, it was found that some samples were identified by only a 
few generated models.  

These samples exhibited low values for the sum of correct responses and were considered 
boundary values that excluded certain samples from the original dataset.  

For this experiment, the following boundaries were selected: for rooster’s ≤ 32 and for 
hen’s ≤ 5.  

The following samples were removed from the original dataset due to difficulty in 
identification: roosters – 3, 9, 14, 24 and hens – 30, 35, 37. 

3.2 Model formation 

Following the exclusion of seven samples from the dataset, 31 samples remained – 11 hens 
and 20 roosters.  

Methods M07 and M08 were added to the set of machine learning algorithms. Based on 
the results of the first experiment, groups G01, G02, G03, and G11 were selected for model 
formation.  

For each feature group G01, G02, G03, G11, and machine learning algorithm M01-M08, 
models were built utilizing K-fold cross-validation with three partitions.  

The metrics for each shuffle were averaged to obtain the final evaluation of classification 
metrics (Figure 2, 3). Overall, there were 4×8×3 models generated. 
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In the third and final experiment, we formed a resulting set of features and successfully
obtained the final machine learning model.

Let us take a closer look at the progress of each of the conducted experiments.

3.1 Identifiability check

For datasets with small sample sizes, errors in data collection can have a significant impact
on the final results. 

In order to study the identifiability of objects from the original sample using machine
learning models, the Leave-One-Out method was used with the application of ML algorithms 
M01-M06 for G01-G10 feature groups. 

In the end, a total of 38×10×6 models were built, and the experiment's results are 
presented in Figure 1 as a heat map.

Each cell of heat map shows the total number of correct conclusions out of 6 models
obtained using different machine learning algorithms for an individual sample.

Fig. 1. Heat map displaying the result of the first experiment (R – Rooster, H – Hen).

Upon analyzing the heat map, it was found that some samples were identified by only a 
few generated models.

These samples exhibited low values for the sum of correct responses and were considered
boundary values that excluded certain samples from the original dataset. 

For this experiment, the following boundaries were selected: for rooster’s ≤ 32 and for 
hen’s ≤ 5.

The following samples were removed from the original dataset due to difficulty in
identification: roosters – 3, 9, 14, 24 and hens – 30, 35, 37. 

3.2 Model formation

Following the exclusion of seven samples from the dataset, 31 samples remained – 11 hens
and 20 roosters. 

Methods M07 and M08 were added to the set of machine learning algorithms. Based on
the results of the first experiment, groups G01, G02, G03, and G11 were selected for model 
formation. 

For each feature group G01, G02, G03, G11, and machine learning algorithm M01-M08,
models were built utilizing K-fold cross-validation with three partitions. 

The metrics for each shuffle were averaged to obtain the final evaluation of classification
metrics (Figure 2, 3). Overall, there were 4×8×3 models generated.

The generalized results for AUC ROC and F1-measure are presented in Table 1. Among 
the obtained models, those with the highest averaged metrics (AUC=67-72%, F1=70-76%) 
were those generated by algorithms M04 and M05 utilizing features from groups G02 and 
G11. The metrics for feature group G02 (11 features) exceeded those from the models 
generated using the feature group G1 (53 features) so the models built with a smaller number 
of features produced better results than models with more features.  

Fig. 2. Usage of ROC-analysis in first and third experiments: average ROC for 3-fold cross validation 
for single ML algorithm.  

Fig. 3. Comparison of mean ROC curves: from model on G11 feature group. 
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Table 1. Result of experiments (Cross-validation, K=3). 
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M01 M02 M03 M04 M05 M06 M07 M08 

2 G01 AUC 0.484 0.495 0.627 0.543 0.536 0.382 0.559 0.464 
F1 0.56 0.54 0.61 0.59 0.59 0.51 0.51 0.54 

G02 AUC 0.664 0.655 0.659 0.673 0.718 0.532 0.618 0.464 
F1 0.68 0.68 0.68 0.76 0.74 0.61 0.49 0.58 

G03 AUC 0.427 0.509 0.489 0.602 0.532 0.495 0.386 0.436 
F1 0.45 0.53 0.52 0.61 0.58 0.47 0.51 0.48 

G11 AUC 0.614 0.584 0.698 0.723 0.673 0.591 0.309 0.432 
F1 0.58 0.59 0.65 0.68 0.71 0.54 0.51 0.58 

3 G12 AUC 0.668 0.634 0.734 0.720 0.693 0.600 0.591 0.364 
F1 0.68 0.62 0.73 0.70 0.71 0.51 0.58 0.49 

G13 AUC 0.602 0.627 0.668 0.702 0.602 0.577 0.386 0.368 
F1 0.63 0.65 0.67 0.61 0.64 0.51 0.51 0.54 

It could be attributed to the curse of dimensionality, noise in the data, and an increase in 
entropy [11].  

As the number of features increases, the amount of noise and randomness in the data also 
increases, making it more challenging to extract meaningful patterns and information from 
the data. Dimensionality reduction techniques and feature selection methods are useful tools 
to address these issues and improve model performance. 

3.3 Model finalization 

The goal of the third experiment was to enhance model metrics by using more informative 
features. This task was accomplished through implementing SHAP values [12].  

The relative importance values were calculated for the best models of the second 
experiment – M04, M05, and feature group G11 (consisting of G01, G02, G03). 

Using SHAP feature’s value reflecting, which reflect the relative importance of features 
two new feature groups was formed: G12 for model M04 and G13 for M05. Each group 
contains the 15 most informative egg geometric shape parameters (Figure 4). 

Fig. 4. Heat map of feature importance values obtained based on SHAP indices. 
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It could be attributed to the curse of dimensionality, noise in the data, and an increase in
entropy [11]. 

As the number of features increases, the amount of noise and randomness in the data also
increases, making it more challenging to extract meaningful patterns and information from
the data. Dimensionality reduction techniques and feature selection methods are useful tools 
to address these issues and improve model performance.

3.3 Model finalization

The goal of the third experiment was to enhance model metrics by using more informative
features. This task was accomplished through implementing SHAP values [12]. 

The relative importance values were calculated for the best models of the second 
experiment – M04, M05, and feature group G11 (consisting of G01, G02, G03).

Using SHAP feature’s value reflecting, which reflect the relative importance of features 
two new feature groups was formed: G12 for model M04 and G13 for M05. Each group 
contains the 15 most informative egg geometric shape parameters (Figure 4).

Fig. 3. Heat map of feature importance values obtained based on SHAP indices. 

Using the newly truncated feature groups G12 and G13, all algorithms were retrained. As 
a result, the three final models – M03, M04, M05 using feature group G12, yielded the best 
results (see Table 1 and Figure 3 for third experiment results).  

Thus, the obtained solution allows for determining avian embryo sex non-invasively 
before incubation with an acceptable level of metrics based on egg geometric shape 
parameters using machine learning methods. 

4 Conclusions 
As result of the proposed solution for the development of non-destructive models for 
determining the sex of embryos in bird eggs, three final models were obtained with accuracy 
metric values of AUC=73-72% and F1=69-72%: Random Forest Classifier with 4 estimators 
and max depth 3, Random Forest Classifier with 10 estimators and max depth 5, AdaBoost 
Classifier with 4 Decision Tree estimators and max depth 3.  

The use of cross-validation to assess the accuracy metrics of the models helped reduce 
the impact of overfitting. 

Reducing the feature set and selecting the significant 16 features allowed for an increase 
in AUC metrics up to 7% and F1 metrics up to 5% for some algorithms.  

The resulting feature group included the egg's geometric characteristics: 8 out of 11 shape 
index parameters based on transverse and longitudinal dimensions by segments, and 8 out of 
36 characteristics of radius vectors drawn from the center of the object to the contour 
boundary.  

Thus, the obtained results indicate that the proposed combination of machine learning 
algorithms allows for the development of classification models for tasks where the feature 
space significantly exceeds the sample size with ambiguously identifiable samples.  

These results make a certain contribution to solving the complex problem of sex 
determination in the egg embryo during the pre-incubation period. 

Further research is planned to increase the amount of data and obtain classification models 
suitable for practical use. 
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