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Abstract. The paper considers the method of averaging over a movable 
liquid control volume for some problems of fluid mechanics. The authors 
study the process of obtaining a solution for the problem of fluid flow with 
different configurations along the cross section of a pipe with a filled porous 
medium, as well as flow in an open-flow channel. Obtaining an approximate 
analytical solution based on a movable control volume is described. The 
well-known control volume method used in numerical analysis is used 
considering its displacement. The method of displacement makes it possible 
to obtain an analytical representation of the solution of the problem under 
consideration. At the same time, obtaining an analytical solution method is 
achieved by averaging the equation describing the flows over the control 
volume. Based on the obtained solution in the limit, we obtain solutions to 
the problem without considering porous media, and with different pipe 
cross-sections (flat, round, ellipsoidal and rectangular). With certain 
configurations of the pipe section, an exact solution is obtained. 

1 Introduction 
Many problem statements in which the flow in pipes filled with porous inclusions is studied 
are typical for modern technological processes and devices in mining and machine-building 
enterprises. Depending on the technologies and devices used, it can be noted that the sections 
of these pipes also have a different shape. As a rule, these are round, rectangular, elliptical 
and other cross-sectional shapes. To determine the patterns of flow, it is important to know 
the hydrodynamic characteristics of the flow in such pipes. For practice, visualization and 
compactness of solving problems of studying patterns are important, since a practical 
engineer works with this data. Therefore, it is convenient for a specialist to obtain solutions 
in a compact form. This allows him to draw conclusions about the nature of the flow in pipes 
and channels in real time without delay associated with lengthy data processing. 

It is known that many problems on the flow of liquid and gas belong to the class of 
research problems, which are reduced to solving boundary value problems of differential 
equations. Based on the requirements of our formulation of the problem, it is important to 
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use approximate solution methods that have less accuracy, but allow solving the problem 
quickly. Currently, various approximate analytical methods are used that allow solving 
differential equations. For example, the use of an artificial neural network. In this connection, 
we note the works [1, 2]. In these works, the authors propose to use an artificial neural 
network based on models for solving linear ordinary differential equations. In this case, 
solutions are considered for linear ordinary differential equations of the first and second order 
with a constant coefficient under initial conditions. In contrast to the standard approach, in 
[3-7] for solving differential equations, the authors proposed and implemented some non-
standard difference schemes. 

We can note the method of moving volumes. This method turned out to be a fairly 
convenient way to obtain an approximate analytical solution of differential equations. The 
method is applied on the basis of a movable node. In [8], an approximate analytical 
expression for the difference solution of a differential problem was obtained. The movable 
node method was also applied in [9]. In this work, on the basis of the method of movable 
nodes, the determination and construction of control volumes is carried out. Combinations of 
the movable node method with the ideas of Richardson's extrapolation are aimed at 
improving the accuracy of calculations. This is substantiated in [10]. Also, a number of 
authors solve the problems of monotonicity of the difference scheme using a movable node. 
One approach to the solution is presented in [11]. The number of applied solutions that are 
associated with the use of this method in technological processes and devices of production 
systems is growing. Some applied problems, for which the movable node method was 
applied, are presented in [12]. Based on the choice of the velocity profile on the edge of the 
control volume, qualitative schemes were obtained in [13]. 

2 Materials and methods 
In this work, we will consider the process as the process of the flow of a viscous Newtonian 
fluid through pipes filled with a porous medium. Since we believe that the flow is stationary 
and one-dimensional, then the Rakhmatulin equation [14-16] is applicable. Based on this, we 
get the following equation in the Cartesian coordinate system 
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Here ���,�� is the flow velocity, the Oz axis is directed along the pipe axis, Δ𝑃𝑃/𝑙𝑙 is the 
pressure drop, 𝜇𝜇 is the viscosity of the liquid, 𝑓𝑓 is the porosity of the medium, 𝐾𝐾 is the 

interaction coefficient obtained on the basis of the Kozeni–Karman ratio �𝐾𝐾 � �
�� �

���
� ��� ,𝑑𝑑 

is the characteristic size of the porous medium (we consider the pressure drop and the 
viscosity of the liquid constant). We consider the pipe boundary satisfying the equation 
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Fig. 1. Pipe section. 
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The pipe section is shown in figure 1. In the case of 𝑛𝑛 � 2and 𝑎𝑎 � 𝑏𝑏 (2) represents the 
cross section of a circular pipe with radius 𝑎𝑎; for 𝑛𝑛 � 2, 𝑎𝑎 � 𝑏𝑏, we obtain the cross section 
of an ellipsoidal pipe with semi-axes 𝑎𝑎 and 𝑏𝑏. With sufficiently large even 𝑛𝑛, the pipe section 
approaches a rectangular one.  

Thus, to find a solution to equation (1) with the conditions of adhesion at the pipe 
boundaries by the moved volume method. 

This method is also used for fluid flow problems in open channels. 

3 Results and discussion 

3.1 Solving the problem of flow through pipes by the method of a movable 
control volume 

Let 𝑃𝑃�𝑑𝑑,𝑦𝑦� be an arbitrary point inside the pipe section (figure 1). We make parallel lines 
through this point along the coordinate axes to the intersection with the pipe boundary. 
Denote these points by 𝐸𝐸,𝑊𝑊,𝑁𝑁, 𝑆𝑆. The coordinates of these boundary points: 
𝐸𝐸�𝑑𝑑� ,𝑦𝑦��,𝑊𝑊�𝑑𝑑�,𝑦𝑦��, 𝑁𝑁�𝑑𝑑�,𝑦𝑦�� and 𝑆𝑆�𝑑𝑑�,𝑦𝑦��. Select a rectangular control volume as 
follows. Let's choose the midpoint of the points 𝑃𝑃and 𝐸𝐸 (� � 0.5�𝐸𝐸 � 𝑃𝑃�), 𝑊𝑊 and 𝑃𝑃 ( � �
0.5�𝑊𝑊 � 𝑃𝑃�), similarly 𝑛𝑛 � 0.5�𝑁𝑁 � 𝑃𝑃� and � � 0.5�𝑆𝑆 � 𝑃𝑃�. Let's denote the coordinates of 
the points ��𝑑𝑑� ,𝑦𝑦��, ��𝑑𝑑� ,𝑦𝑦��,  𝑛𝑛�𝑑𝑑�,𝑦𝑦�� and ��𝑑𝑑�,𝑦𝑦��. By making parallel lines through 
these points along the coordinate axes, we get a rectangle (the shaded area in figure 1). When 
𝑃𝑃 changes its position, the control volume also changes. We integrate equation (1) over the 
control volume. 
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Here 𝐷𝐷: �𝑑𝑑� � 𝑑𝑑 � 𝑑𝑑�;𝑦𝑦� � 𝑦𝑦 � 𝑦𝑦��, � � �Δ𝑃𝑃/����. The first term in (3) is 
transformed as follows: 
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Similarly, the second term of the left part is approximated. The integral in the right part 
(3) is replaced by the expression 
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Thus, (2) is replaced by the following algebraic equation 
2
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2
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𝑦𝑦� � 𝑦𝑦 � 𝑓𝑓��� 𝑢𝑢 � 𝑢𝑢�

𝑦𝑦 � 𝑦𝑦� �� �𝑓𝑓� � �𝑢𝑢�. 
Using the no-slip boundary conditions, we find the flow velocity 
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Where the designation is entered 
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(4) represents the distribution of the flow velocity for pipes of different cross-sections filled 
with a porous medium. 

Due to the fact that the points are on the boundary (2), we get, 

𝑦𝑦� � 𝑏𝑏�1 � ��
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��

� , 𝑥𝑥� � 𝑎𝑎�1 � ��
��

� .                     (5) 

If we assume in (4), we get the solution of the problem in the absence of a porous layer, 
we get, 
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Let us consider special cases. Let's put in (6)  𝑛𝑛 � 2 and  𝑎𝑎 � 𝑏𝑏, i.e. consider the flow in 
a circular tube with radius 𝑎𝑎. Then we have 
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Here 𝑟𝑟� � 𝑥𝑥� � 𝑦𝑦�. Thus, we obtain Poiseuille's law for a round pipe. If 𝑛𝑛 � 2, and 𝑎𝑎 �
𝑏𝑏 then we have a flow in an ellipsoidal tube. In this case, from (6) follows  
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The law of the distribution of the flow velocity according to the formula (9) coincides 
with the exact solution [18].  

To obtain an approximate analytical solution for a pipe with a rectangular cross-section, 
we proceed to the limit in (6) at 𝑛𝑛 𝑛 ∞. After a simple operation, we get 
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However, formula (9) does not coincide with the exact solution [18-20], but it comes 
close to it. To get a solution for a flat pipe, we go to the limit in (9) at 𝑎𝑎 𝑛 ∞, then we have 

� � 𝑏𝑏� �1 � ��
��� ⋅
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�                                                                         (10) 

Solution (10) accurately reflects the solution of the problem for a flat pipe with height 
[18]. 

Let's compare the exact solution for a rectangular pipe, which has the form [18] 
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with an approximate solution (9) (𝑏𝑏the height of the rectangle, the parallel axis 𝑂𝑂𝑦𝑦, the 
base of the parallel axis 𝑂𝑂𝑥𝑥 and the width is 2𝑎𝑎 (the axis passes through the center of the 
rectangle and is directed downstream). Figure 2 shows the exact and approximate solution at 
the in section 𝑥𝑥 � 1 (А � 1, 𝑏𝑏 � 1,𝑎𝑎 � 2.5 ). 
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Fig. 2. Comparison of the solution. 

Thus, formula (6) describes the velocity distribution well for pipes of type (2) with 
different cross-sections. 

3.2 Solving the problem of open channel flow by the method of a movable 
control volume 

Let us consider the currents in a long channel. There is no pressure drop along the length of 
the flow, the transverse pressure drop is static, the same in all sections. 

 
Fig. 3. Rectangular channel. 

Let the angle of inclination to the horizon is . Then from the Navier-Stokes equation 
[18] we get 
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Let us consider the section of the channel in the form of a rectangle. The height of the 
channel ℎ, and the width 2𝑏𝑏. Boundary conditions are no-slip. The condition on the free 
boundary is   
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Integrating (13) over the control volume (figure 3) we get 
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Here � � �������
� . 

From the no-slip condition it follows that 𝑢𝑢� � 𝑢𝑢� � 𝑢𝑢� � 0. For the definition 𝑢𝑢�we 
proceed as follows. In (14), let's go to the limit 𝑦𝑦 𝑦 𝑦𝑦�then, we get 
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Hence, using (14) we define 
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Using the no-slip conditions and (16) from equation (15) we obtain 
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Let us now consider the velocity distribution along the trapezoidal channel. The 
characteristics of the channel and the coordinate system are shown in figure 4. Due to the 
symmetry of the flow, relative to the axis, consider the right half of the channel. In this case, 
using the same technique, we obtain a solution to the flow problem as follows 

 

 
Fig. 4. Trapezoidal channel. 

𝑢𝑢 � ����
������������������� ��

�
� 𝑖𝑖�ℎ � 𝑦𝑦��𝑦𝑦 � 𝑦𝑦�� � �ℎ�����������

�� � 𝑖𝑖𝑢𝑢��.      (17) 

here, 

𝑢𝑢� � �
� �𝑖𝑖� � 𝑖𝑖 � �ℎ������������

� � �������������
������������������������������������

, 

𝑢𝑢� � �
� �𝑖𝑖� � 𝑖𝑖� � ��������������

��������
� 𝑢𝑢�,  � � 𝑖𝑖�� � �ℎ� 𝑦𝑦��𝑦𝑦 � 𝑦𝑦��, 

𝑦𝑦� � � 0𝑖𝑖𝑖𝑖𝑖𝑖� � �,
�𝑖𝑖� � ��𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖� � �,� � 𝑖𝑖� � � � ℎ/𝑡𝑡𝑡𝑡𝑡𝑡 

4 Conclusion 
The movable control volume method is a good way to obtain analytical solutions to a number 
of problems in mathematical physics. It should be noted that using this method, the solution 

ɤ
x S

N

E EW Ph 

y 

2a

6

E3S Web of Conferences 417, 02016 (2023) https://doi.org/10.1051/e3sconf/202341702016
GEOTECH-2023



�
����� �

����
���� �

����
����� �

�
����� �

����
���� �

����
���� � � �.  (14) 

Here � � �������
� . 

From the no-slip condition it follows that 𝑢𝑢� � 𝑢𝑢� � 𝑢𝑢� � 0. For the definition 𝑢𝑢�we 
proceed as follows. In (14), let's go to the limit 𝑦𝑦 𝑦 𝑦𝑦�then, we get 

𝑢𝑢�
𝑏𝑏 � 1

𝑏𝑏 � 𝑖𝑖 �
1

𝑖𝑖 � 𝑏𝑏� �
2
ℎ
�∂𝑢𝑢�𝑖𝑖,𝑦𝑦��

∂𝑦𝑦 � 𝑢𝑢�
ℎ
� � �. 

Hence, using (14) we define 

𝑢𝑢� � �� ℎ�����������
�ℎ����������      (15) 

Using the no-slip conditions and (16) from equation (15) we obtain 

𝑢𝑢 � �� ��������
��ℎ��������� �

ℎ��
� � ℎ�������

��ℎ���������.   (16) 

Let us now consider the velocity distribution along the trapezoidal channel. The 
characteristics of the channel and the coordinate system are shown in figure 4. Due to the 
symmetry of the flow, relative to the axis, consider the right half of the channel. In this case, 
using the same technique, we obtain a solution to the flow problem as follows 

 

 
Fig. 4. Trapezoidal channel. 
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4 Conclusion 
The movable control volume method is a good way to obtain analytical solutions to a number 
of problems in mathematical physics. It should be noted that using this method, the solution 
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of the problem of flow in pipes is highly versatile and allows one to obtain a solution to the 
problem for pipes with different configurations and different porous fillings. This simple type 
of decision enables specialists to analyze the results obtained and allows them to make 
informed decisions during the study. 
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