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Abstract. Mathematical models of single and multiloop magnetic circuits 
of electromagnetic flow transducers with an annular channel are designed 
taking into account the parameters of the magnetic circuit. The possibility of 
compensating the difference in magnetic resistances of coaxially located 
concentric ferromagnetic cores and the difference in their circumference by 
selecting the thickness of the cores is shown. It has been installed that the 
magnetic flux in ferromagnetic cores is distributed along the angular 
coordinate. The magnetic induction in the annular channel is unevenly 
distributed along the radial coordinates. It was found that with an increase 
in the value of the attenuation coefficient of the magnetic field in the 
magnetic circuit, the degree of magnetic induction in the annular channel 
increases along the angular coordinate, while it remains constant along the 
radial coordinate.  

1 Introduction 
When measuring liquid flow in process control systems, along with other converters, 
electromagnetic flow converters (EFC) are widely used. Along with the serially produced 
EFCs special EFCs are used to control and monitor some technological processes (to control 
and monitor the quantity and quality of dairy products, heat supply, the flow of liquid metals 
and various acids, etc.) [4,5,8]. 

Metrological characteristics of EFC mainly depend on the state of the magnetic field in 
the working channel of the transducer.  Therefore, much attention is paid to the study of the 
magnetic fields of these converters. In this case, it is required to determine the law of change 
in the magnetic induction in the annular channel between the coaxial located by 
ferromagnetic cores depending on the coordinates 𝛼𝛼, 𝜌𝜌 and  𝑧𝑧. 

As is known electromagnetic processes are most fully described by the equations of the 
electromagnetic field, ie Maxwell's equations.  But they are not very suitable for the study of 
magnetic fields of electrical measuring transducers, i.e.  the solutions obtained are 
inconvenient for engineering calculations of the characteristics of converters.  Therefore, the 
magnetic fields of measuring transducers are most often investigated in the form of circuits. 

Magnetic circuits of electromagnetic flow transducers with annular channels belong to 
circuits with distributed parameters [7]. These parameters include linear values of magnetic 
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resistances of annular coaxially located ferromagnetic cores (𝑍𝑍�п) and magnetic capacitance 
(magnetic conductivity by classical analogy of electrical and magnetic circuits) of an annular 
air channel (С�п) between them, per unit of angular coordinate α. 

An analysis of publications devoted to the study of magnetic circuits of electrical and 
non-electric values showed [6] that in almost all cases they are single-loop magnetic circuits 
with distributed parameters and not accounting the distribution of parameters in displaced 
circuits significantly reduces the accuracy of their calculation. Therefore, the discovery of 
the article is devoted to the development of mathematical models of single-circuit and multi-
circuit magnetic circuits by the method of partial electromagnetic flow transducer with an 
annular channel. A mathematical model has been designed and introduced into production 
[8]. 

2 Mathematical models of single-circuit EFC magnetic circuits 
with distributed parameters 
The structural diagram of the magnetic circuit of the first EFC with an annular channel and 
the equivalent circuit of its elementary section dα are shown in Figure 1 a and b [8]. 

To simplify the analysis of magnetic circuits we will accept the following assumptions 
are made:  

1) ring ferromagnetic rings and ferromagnetic rods connecting them to each other are 
made in a monolithic form from the same material;  

2) 2), the magnetic fluxes at both ends of the annular ferromagnetic cores along the 
pipe axis are so small that they may not be taken into account;  

3) the magnetic resistance of ferromagnetic cores does not depend on the value of the 
magnetic field induction in them, that is, the magnetic circuit operates in the linear 
part of the main magnetization curve (if we take into account the presence of a large 
air gap in the path of the working magnetic flux, this assumption is made quite 
acceptable);  

4) due to the small value of the frequency of changes in the magnetic field over time, 
eddy currents in ferromagnetic cores have too small a value that they can be ignored. 

These assumptions do not significantly affect the accuracy of magnetic circuit analysis, 
but they greatly simplify calculations. 

Distinctive feature this magnetic chain is the fact that it created same conditions for circuit 
power lines magnetic across ring running clearance between coaxially located open 
ferromagnetic cores, united between various ends with ferromagnetic jumpers with 
magnetizing winding, i.e. magnetic resistance any way, for which connect power line 
magnetic flow the same. In this case, the difference between the values of the magnetic 
resistances of concentric ferromagnetic cores, which appears as follows: due to the difference 
in their lengths, it can be eliminated by choosing their thickness using the 
ratio �ℎ� ℎ�� � 𝑟𝑟�ср 𝑟𝑟�ср� . Then we can assume that 𝑍𝑍�п� � 𝑍𝑍�п� � 𝑍𝑍�п. 

To simplify calculations , we assume that the magnetic capacitances of non -working air 
gaps are 𝛿𝛿��and  𝛿𝛿�� are equal to each other, i.e.: .: 𝐶𝐶��� � 𝜇𝜇� ��ℎ�� 𝛿𝛿��  � 𝐶𝐶��� �
𝜇𝜇� ��ℎ�� 𝛿𝛿��   From this equation it follows that 𝛿𝛿�� � 𝛿𝛿���ℎ� ℎ�� . If this condition is met, 
we can assume that 𝑄𝑄��� � 𝑄𝑄��� � 𝑄𝑄�� 
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Fig.1. Structural diagram (a) and equivalent circuit of the elementary section (b) of a linear EFC 
magnetic circuit with an annular channel. 

Differential equations based on the following laws Kirchhoff's method for the magnetic 
flux and magnetic voltage generated by MDS  𝐹𝐹в field windings, for an elementary section of 
a magnetic circuit they will look like this:  

𝑑𝑑𝑑𝑑���𝛼𝛼�
𝑑𝑑𝑑𝑑 � ���𝛼𝛼�𝐶𝐶�п 𝑑𝑑𝑑𝑑��

�𝛼𝛼�
𝑑𝑑𝑑𝑑 � ����𝛼𝛼�𝐶𝐶�п 

������
�� � 𝑍𝑍�п�𝑑𝑑���𝛼𝛼� � 𝑑𝑑���𝛼𝛼��                                               (1) 

where:𝑍𝑍��� � �������������
�������м  𝑍𝑍��� � �������������

�������м ; 𝐶𝐶�� � �� ����������������������������м   
where ℎ� - thickness of ferromagnetic jumpers, connecting interaction between each 

other concentric ferromagnetic materials cores. The remaining designations are shown in pic. 
3, a. 
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After simple calculations, we obtain the following differential equation: 
�������
��� � 𝑍𝑍��𝐶𝐶��𝑈𝑈��𝛼𝛼�.                                                          (2) 

The general solution of this differential equation is as follows: 
𝑈𝑈��𝛼𝛼� � 𝐴𝐴�𝑒𝑒�� � 𝐴𝐴�𝑒𝑒���                                                            (3) 

For the magnetic circuit under study, the following condition is met: 
𝑄𝑄���𝛼𝛼� � 𝑄𝑄���𝛼𝛼� � 𝑄𝑄���𝛼𝛼м� � 𝑄𝑄�� � 𝑄𝑄���� � 𝑄𝑄�� 

here 𝑄𝑄�� - magnetic flux closing through non -working air gaps 𝛿𝛿�� and 𝛿𝛿�� 
From (4) finding it 𝑄𝑄���𝛼𝛼�  and substituting it into the third equation (1) we determine 

the expression from the obtained equation 𝑄𝑄���𝛼𝛼� as follows: 
𝑄𝑄���𝛼𝛼� � �

���� �𝐴𝐴�𝑒𝑒
�� � 𝐴𝐴�𝑒𝑒���� � �

� �𝑄𝑄���𝛼𝛼м� � 𝑄𝑄���.                         (4) 

Similarly we find the expression 𝑄𝑄���𝛼𝛼�:  
𝑄𝑄���𝛼𝛼� � � �

���� �𝐴𝐴�𝑒𝑒
�� � 𝐴𝐴�𝑒𝑒���� � �

� �𝑄𝑄���𝛼𝛼м� � 𝑄𝑄���.                     (5) 

The integration constants 𝐴𝐴�� and 𝐴𝐴�� are found taking into account the following 
boundary conditions: 

𝑄𝑄���𝛼𝛼���� � 𝑄𝑄���� � 𝑄𝑄���𝛼𝛼м�
𝑄𝑄���𝛼𝛼����м � 𝑄𝑄���𝛼𝛼м� �                                          (6) 

Substituting in (7) the values of magnetic fluxes and magnetic stresses corresponding to 
the boundary conditions, and solving the resulting system of algebraic equations with respect 
to the unknowns, we have:  

𝐴𝐴�� � �����������������
����������� �𝑒𝑒���� � �                                                    (7) 

𝐴𝐴�� � �����������������
����������� �𝑒𝑒��� � �.                                                      (8) 

Substituting the found values 𝐴𝐴���� VA 𝐴𝐴�� into equations (3), (5), and (6), we obtain 
the following expressions for the magnetic stresses between coaxial concentric ferromagnetic 
cores and for the magnetic fluxes in them: 

𝑈𝑈��𝛼𝛼� � � ������
�������� ��𝑠�𝛾𝛾𝛼𝛼� � �𝑠�𝛾𝛾�𝛼𝛼м � 𝛼𝛼���                                       (9) 

𝑄𝑄���𝛼𝛼� � � ���
������м� �𝑠𝑠𝑠�𝛾𝛾𝛾𝛾� � 𝑠𝑠𝑠�𝛾𝛾�𝛼𝛼м � 𝛼𝛼��� � �

� �𝑄𝑄���𝛼𝛼м� � 𝑄𝑄���         (10)                      

𝑄𝑄���𝛼𝛼� � ���
������м� �𝑠𝑠𝑠�𝛾𝛾𝛾𝛾� � 𝑠𝑠𝑠�𝛾𝛾�𝛼𝛼м � 𝛼𝛼��� � �

� �𝑄𝑄���𝛼𝛼м� � 𝑄𝑄���.         (11)                      
To determine the expressions 𝑈𝑈��𝛼𝛼� and 𝑄𝑄���𝛼𝛼� BA 𝑄𝑄���𝛼𝛼�, expressed in terms of the 

MDS 𝐹𝐹�� the field windings, it will be necessary to determine the values 𝑜𝑜𝑜𝑜𝑄𝑄�� (total 
magnetic flux), 𝑄𝑄�� and 𝑄𝑄���𝛼𝛼��, expressed in terms of the MDS 𝐹𝐹��.  

To do this, we will make the following equations based on Kirchhoff's laws for the node 
"a", as well as for the closed contours "𝑎𝑎𝑎𝑎�𝑏𝑏�𝑏𝑏𝑏𝑏" and "𝑏𝑏𝑏𝑏𝑏𝑏�𝑎𝑎𝑏𝑏𝑏�𝑏𝑏" of the magnetic circuit 
under study: 

𝑄𝑄�� � 𝑄𝑄���𝛼𝛼м� � 𝑄𝑄��,                                                   (12) 
𝑍𝑍��𝑄𝑄�� � 𝑈𝑈��𝛼𝛼�� �𝑊𝑊��𝑄𝑄�� � 𝐹𝐹��,                                         (13) 

𝑍𝑍��𝑄𝑄�� � 𝑍𝑍�� � 𝑄𝑄���𝛼𝛼��𝛼𝛼 ���
� 𝑈𝑈��� � 𝐹𝐹��                                (14) 

where 𝑊𝑊�� � �
�� is the magneticая stiffness of the magnetic circuit (according to the energy-

information model of circuits of various physical nature [10]), and by the classical analogy 
of electric and magnetic circuits, this parameter is called the magnetic resistance of the 
circuit. Solving together equations (13)-(15) with respect 𝑡𝑡𝑡𝑡𝑞𝑞��, 𝑄𝑄�� , and 𝑄𝑄���𝛼𝛼��, we 
obtain their following expressions: 

𝑄𝑄�� � �𝐹𝐹�� ����������������
∆�                                                         (15) 
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𝑄𝑄���𝛼𝛼�� � ���� ������������������
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𝑄𝑄� � ���� ���������
∆�                                                (17) 

where ∆�� �𝑍𝑍��𝛼𝛼� �𝑊𝑊����𝑍𝑍�𝑛𝑛𝛼𝛼�� � 𝐶𝐶𝑆𝑆𝑆𝑆� � 𝑍𝑍��𝛽𝛽𝑠𝑠𝑐�� � 𝛽𝛽𝑍𝑍��𝑊𝑊��𝑆𝑆𝑆𝑆𝑆𝑆. 
Substituting (29)-(31) in equations (11)-(13), respectively, we obtain the following final 

expressions for the magnetic voltage and magnetic fluxes: 
𝑈𝑈��𝛼𝛼� � ��� ������������

∆� �𝑐𝑐𝑐�𝛽𝛽𝛽𝛽∗� � 𝑐𝑐𝑐�𝛽𝛽� � 𝛼𝛼∗���.                             (18) 

𝑄𝑄���𝛼𝛼� � ��� �
∆� ��𝑊𝑊�� � 𝑍𝑍�𝑛𝑛𝛼𝛼���𝑠𝑠𝑠�𝛽𝛽𝛽𝛽∗� � 𝑠𝑠𝑐�𝛽𝛽� � 𝛼𝛼∗��� �𝑊𝑊��𝑠𝑠𝑐𝛽𝛽�.     (19)                   

𝑄𝑄���𝛼𝛼� � ���� �
∆� ��𝑊𝑊�� � 𝑍𝑍�𝑛𝑛𝛼𝛼���𝑠𝑠𝑠�𝛽𝛽𝛽𝛽∗� � 𝑠𝑠𝑐�𝛽𝛽� � 𝛼𝛼∗��� �𝑊𝑊��𝑠𝑠𝑐𝛽𝛽�  (20)                

where 𝛼𝛼∗ � �
�� 

The dependence of the magnetic induction of the magnetic field in the annular channel 
on the coordinate 𝛼𝛼 is determined using the following expression: 

𝐵𝐵�𝛼𝛼� � 𝜇𝜇� ������ � �в𝜇𝜇� ����������м��∆� �𝑐𝑐𝑐�𝛽𝛽𝛽𝛽∗� � 𝑐𝑐𝑐�𝛽𝛽� � 𝛼𝛼∗���              (21) 
The degree of uneven distribution of the magnetic field induction in the annular channel 

along the coordinate α is calculated by the formula: 
   𝛿𝛿𝛿𝛿�𝛼𝛼� � ���������������� � �  � � � ��������

����� � �         (22)                       
The law of variation of the magnetic field induction in an annular channel along the radial 

coordinate 𝑝𝑝 is determined using the following expression: 
𝐵𝐵�𝜌𝜌� � � �������

����������������������������� � ���� �������������������
����������������������∆�����∆��   (23)                   

If 𝑊𝑊� → ∞or 𝐶𝐶� � , expressions (29) - (31) and (32)-(35) will be equal to: 
𝑄𝑄�� � 𝑄𝑄���𝛼𝛼�� � ���� �����

∆�   𝑄𝑄� � ,                               (24) 

𝑈𝑈��𝛼𝛼� � ��� ������
∆� �𝑐𝑐𝑐�𝛽𝛽𝛽𝛽∗� � 𝑐𝑐𝑐�𝛽𝛽� � 𝛼𝛼∗���.                      (25) 

𝑄𝑄���𝛼𝛼� � �в �
∆� �𝑠𝑠𝑠�𝛽𝛽𝛽𝛽

∗� � 𝑠𝑠𝑐�𝛽𝛽� � 𝛼𝛼∗�� � 𝑠𝑠𝑐𝛽𝛽�.                    (26) 

𝑄𝑄���𝛼𝛼� � ��в �
∆� ��𝑠𝑠𝑠�𝛽𝛽𝛽𝛽

∗� � 𝑠𝑠𝑐�𝛽𝛽� � 𝛼𝛼∗�� � 𝑠𝑠𝑐𝛽𝛽��                (27) 

𝐵𝐵�𝛼𝛼� � ���𝜇𝜇� �������∆� �𝑐𝑐𝑐�𝛽𝛽𝛽𝛽∗� � 𝑐𝑐𝑐�𝛽𝛽� � 𝛼𝛼∗���                     (28) 
where ∆�� 𝑍𝑍�� � 𝑐𝑐𝑐𝛽𝛽� � 𝑍𝑍�𝛽𝛽𝛽𝛽𝛽𝛽𝛽 � 𝑍𝑍�𝛽𝛽𝛽𝛽𝛽𝛽𝛽;𝑍𝑍� � 𝑍𝑍��𝛼𝛼� 

Expressions (19) - (22) are mathematical models of the linear magnetic circuit of the EFC 
shown in Figure 2, taking into account the distribution of magnetic circuit parameters and 
scattering fluxes that close through non-working gaps. They can be used to determine the 
design parameters of magnetic circuits and study the static and dynamic characteristics of an 
EFC with an annular channel. 

3 Mathematical models of multi-circuit EFC magnetic circuits 
with distributed parameters 
The design diagram of the magnetic circuit of the EFC with ring channels developed with the 
participation of the authors of the article, and the scheme of replacing its elementary part are 
shown in Figure 2 [9]. The magnetic system consists of external and 1 internal 2 closed 
cylindrical pole pieces, two open hollow cylindrical magnetic cores 3 and 4, and mutually 
coaxially positioned mirror and are alternately connected to the pole pieces 1 and 2 using 
ferromagnetic jumpers 5 and 6, the source MDS, made in the form of an electromagnet 
connecting the inner ends of the pole pieces 2 and unconfined cylindrical magnetic circuit 4,  
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the side surfaces of which the insulating plates 8 and 9 are mounted flat electrodes 10 and 
11. Pole tips 1 and 2, open cylindrical magnetic lines 3 and 4, ferromagnetic jumpers 5 and 
6, and a MDS source 7 form a multi-circuit magnetic circuit with distributed parameters. 

We will start developing mathematical models of a multi-loop magnetic circuit by 
drawing up a substitution scheme for its elementary section of length 𝑑𝑑𝑑𝑑 (Figure 3). 

Differential equations based on Kirchhoff's laws for an elementary section of a multi-loop 
magnetic circuit with distributed parameters have the following form:      

              ������ � ����𝐶𝐶�п��,                                              (29) 
 

A A

“A-A”

dxx
ХM

µ4Q

Qµ4

Qµ3
Qµ2

Qµ1

µ3Q

µ2Q

µ1Q

µ0Q

 
Fig. 2. Structural diagram of an EFC multiloop magnetic system with annular channels. 
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Fig. 3. Equivalent circuit of an elementary section of a multiloop magnetic circuit with distributed 
parameters 

                       
�����
�� � �𝑓𝑓� � ����𝑄𝑄�� � �����𝑄𝑄��,                                               (30) 

                               
����
�� � 𝑈𝑈���𝐶𝐶�����𝑈𝑈���𝐶𝐶����,                                                      (31) 

                        
�����
�� � ������𝑄𝑄�� � ����𝑄𝑄���,                                                     (32) 

                               
����
�� � ��𝑈𝑈���𝐶𝐶�����𝑈𝑈���𝐶𝐶�����,                                                 (33) 

                        
�����
�� � ����𝑄𝑄�� � ����𝑄𝑄��,                                                       (34) 

                               
����
�� � 𝑈𝑈���𝐶𝐶�����𝑈𝑈���𝐶𝐶����,                                                      (35) 

                        
�����
�� � ������𝑄𝑄�� � ����𝑄𝑄���,                                                   (36) 

                               
����
�� � �𝑈𝑈���𝐶𝐶����,                                                               (37) 

where 𝑓𝑓�� is the linear value 𝑜𝑜𝑜𝑜𝐹𝐹��. 
Differentiating equations (31), (33), (35) VA (37) by the 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and substituting 

in them (30), (32), (34), (36) in (38), we obtain the following system of second-order 
differential equations with constant coefficients:  

⎩
⎪⎪
⎨
⎪⎪
⎧ ������

��� � ����� � �����𝐶𝐶����𝑈𝑈��� � ����𝐶𝐶����𝑈𝑈���
������
��� � ����𝐶𝐶����𝑈𝑈��� � ����� � �����𝐶𝐶����𝑈𝑈��� � ����𝐶𝐶����𝑈𝑈���

������
��� � ����𝐶𝐶����𝑈𝑈��� � ����� � �����𝐶𝐶����𝑈𝑈��� � ����𝐶𝐶����𝑈𝑈���

������
��� � ����𝐶𝐶����𝑈𝑈��� � ����� � �����𝐶𝐶����𝑈𝑈���

         (38) 

The system of equations (39) is a mathematical model of the investigated multi-loop 
magnetic circuit with distributed parameters in the form of differential equations and it can 
be solved using standard computer programs provided in reference books on higher 
mathematics. 
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In this article, we will limit ourselves to solving a system of differential equations for a 
two-circuit magnetic circuit with distributed parameters. For this chain, the system of 
equations (39) takes the following form: 

                     �
������
��� � �𝑍𝑍��� � 𝑍𝑍����𝐶𝐶����𝑈𝑈��� � 𝑍𝑍���𝐶𝐶����𝑈𝑈���

������
��� � 𝑍𝑍���𝐶𝐶����𝑈𝑈��� � �𝑍𝑍��� � 𝑍𝑍����𝐶𝐶����𝑈𝑈���

                           (39)  

 
The characteristic equation of system (40) has the following form: 

                               ��𝑎𝑎�� � 𝑘𝑘��𝑎𝑎��
𝑎𝑎���𝑎𝑎�� � 𝑘𝑘��� � ,                                                (40) 

here 𝑎𝑎��� � �𝑍𝑍����� � 𝑍𝑍�����𝐶𝐶������ 𝑎𝑎��� � 𝑍𝑍����𝐶𝐶����� 𝑎𝑎��𝐴𝐴 � 𝑍𝑍����𝐶𝐶����� 
𝑎𝑎��� � �𝑍𝑍���� � 𝑍𝑍�����𝐶𝐶������ 

 Roots of the characteristic equation (41): 

𝑘𝑘�� � ����������������������������������������
� � �𝛾𝛾�, 

𝑘𝑘�� � ���𝑎𝑎�� � 𝑎𝑎��� � ��𝑎𝑎�� � 𝑎𝑎���� � �𝑎𝑎��𝑎𝑎�� � 𝑎𝑎��𝑎𝑎���
 � �𝛾𝛾� 

The General solution to the system of differential equations (40) is written as: 
  𝑈𝑈��� � 𝐴𝐴�𝑚𝑚���𝑒𝑒��� � 𝐴𝐴�𝑚𝑚���𝑒𝑒���� � 𝐴𝐴�𝑚𝑚���𝑒𝑒��� � 𝐴𝐴�𝑚𝑚���𝑒𝑒����,             (41) 
  𝑈𝑈��� � 𝐴𝐴�𝑛𝑛���𝑒𝑒��� � 𝐴𝐴�𝑛𝑛���𝑒𝑒���� � 𝐴𝐴�𝑛𝑛���𝑒𝑒��� � 𝐴𝐴�𝑛𝑛���𝑒𝑒����,                 (42) 

here 𝐴𝐴� � 𝐴𝐴� – A1 ÷ A4 are integrationconstants; 𝑚𝑚��� � 𝑚𝑚��� BA 𝑛𝑛��� � 𝑛𝑛�������������� 
coefficients corresponding to the roots of the characteristic equation �𝐾𝐾� � 𝑘𝑘� � 𝐾𝐾�.  
 For the two-circuit magnetic circuit under study, the following condition is met: 

𝑄𝑄���𝑥𝑥� � 𝑄𝑄���𝑥𝑥� � 𝑄𝑄���𝑥𝑥�                                        (43) 
 From (44) find 𝑄𝑄���𝑥𝑥�, substitute it in (33) and together with (31) we obtain the 

following system of equations: 

� 𝑍𝑍���𝑄𝑄�� � 𝑍𝑍���𝑄𝑄�� � �����
�� � 𝑜𝑜в

𝑍𝑍���𝑄𝑄�� � �𝑍𝑍����𝑍𝑍����𝑄𝑄�� � ������
��                              (44) 

 Solving the system of algebraic equations (45), we find the values 𝑜𝑜𝑜𝑜𝑄𝑄����� 𝑄𝑄��: 

  𝑄𝑄�� � � �����������
∆�

�����
�� 𝜇𝜇𝐷𝐷𝐷𝐷 � ����

∆�
�����
�� 𝜇𝜇𝐷𝐷𝐷𝐷 � ����������∆���

∆� 𝑓𝑓��         (45)               

𝑄𝑄�� � �����
∆�

�����
�� � ����

∆�
�����
�� � ����

∆� 𝑓𝑓��                                 (46) 
here ∆�� ��𝑍𝑍����𝑍𝑍��� � 𝑍𝑍���𝑍𝑍��� � 𝑍𝑍���𝑍𝑍���� 

 𝑇𝑇𝑇𝑇𝑇𝑞𝑞𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣���� are based on (44): 
    𝑄𝑄�� � 𝑄𝑄�� � 𝑄𝑄�� � �����

∆�
�����
�� 𝜇𝜇𝐷𝐷𝐷𝐷 � �����������

∆�
�����
�� 𝜇𝜇𝐷𝐷𝐷𝐷 � ����∆��

∆� 𝑓𝑓��        (47)     
 Differentiating (42) and (43) by 𝑥𝑥 and substituting them in (46), (47) and (48), we obtain: 

𝑄𝑄�� �  �������
�������������������

∆� � 𝐴𝐴�𝛾𝛾�𝑒𝑒��� � ��������������������������
∆� � 𝐴𝐴�𝛾𝛾�𝑒𝑒���� �

� ��������������������������
∆� � 𝐴𝐴�𝛾𝛾�𝑒𝑒��� � ��������������������������

∆� � 𝐴𝐴�𝛾𝛾�𝑒𝑒���� �
�����������

∆� 𝑓𝑓в                                                                                    (48) 

𝑄𝑄�� � ��𝑍𝑍���𝑛𝑛
��� � 𝑍𝑍���𝑚𝑚���

∆� � 𝐴𝐴�𝛾𝛾�𝑒𝑒��� � �𝑍𝑍���𝑛𝑛
��� � 𝑍𝑍���𝑚𝑚���

∆� � 𝐴𝐴�𝛾𝛾�𝑒𝑒���� � 

�������������������
∆� � 𝐴𝐴�𝛾𝛾�𝑒𝑒��� � ������������������

∆� � 𝐴𝐴�𝛾𝛾�𝑒𝑒���� � ����
∆� 𝑓𝑓в       (49)  

8

E3S Web of Conferences 417, 03006 (2023)	 https://doi.org/10.1051/e3sconf/202341703006
GEOTECH-2023



In this article, we will limit ourselves to solving a system of differential equations for a 
two-circuit magnetic circuit with distributed parameters. For this chain, the system of 
equations (39) takes the following form: 

                     �
������
��� � �𝑍𝑍��� � 𝑍𝑍����𝐶𝐶����𝑈𝑈��� � 𝑍𝑍���𝐶𝐶����𝑈𝑈���

������
��� � 𝑍𝑍���𝐶𝐶����𝑈𝑈��� � �𝑍𝑍��� � 𝑍𝑍����𝐶𝐶����𝑈𝑈���

                           (39)  

 
The characteristic equation of system (40) has the following form: 

                               ��𝑎𝑎�� � 𝑘𝑘��𝑎𝑎��
𝑎𝑎���𝑎𝑎�� � 𝑘𝑘��� � ,                                                (40) 

here 𝑎𝑎��� � �𝑍𝑍����� � 𝑍𝑍�����𝐶𝐶������ 𝑎𝑎��� � 𝑍𝑍����𝐶𝐶����� 𝑎𝑎��𝐴𝐴 � 𝑍𝑍����𝐶𝐶����� 
𝑎𝑎��� � �𝑍𝑍���� � 𝑍𝑍�����𝐶𝐶������ 

 Roots of the characteristic equation (41): 

𝑘𝑘�� � ����������������������������������������
� � �𝛾𝛾�, 

𝑘𝑘�� � ���𝑎𝑎�� � 𝑎𝑎��� � ��𝑎𝑎�� � 𝑎𝑎���� � �𝑎𝑎��𝑎𝑎�� � 𝑎𝑎��𝑎𝑎���
 � �𝛾𝛾� 

The General solution to the system of differential equations (40) is written as: 
  𝑈𝑈��� � 𝐴𝐴�𝑚𝑚���𝑒𝑒��� � 𝐴𝐴�𝑚𝑚���𝑒𝑒���� � 𝐴𝐴�𝑚𝑚���𝑒𝑒��� � 𝐴𝐴�𝑚𝑚���𝑒𝑒����,             (41) 
  𝑈𝑈��� � 𝐴𝐴�𝑛𝑛���𝑒𝑒��� � 𝐴𝐴�𝑛𝑛���𝑒𝑒���� � 𝐴𝐴�𝑛𝑛���𝑒𝑒��� � 𝐴𝐴�𝑛𝑛���𝑒𝑒����,                 (42) 

here 𝐴𝐴� � 𝐴𝐴� – A1 ÷ A4 are integrationconstants; 𝑚𝑚��� � 𝑚𝑚��� BA 𝑛𝑛��� � 𝑛𝑛�������������� 
coefficients corresponding to the roots of the characteristic equation �𝐾𝐾� � 𝑘𝑘� � 𝐾𝐾�.  
 For the two-circuit magnetic circuit under study, the following condition is met: 

𝑄𝑄���𝑥𝑥� � 𝑄𝑄���𝑥𝑥� � 𝑄𝑄���𝑥𝑥�                                        (43) 
 From (44) find 𝑄𝑄���𝑥𝑥�, substitute it in (33) and together with (31) we obtain the 

following system of equations: 

� 𝑍𝑍���𝑄𝑄�� � 𝑍𝑍���𝑄𝑄�� � �����
�� � 𝑜𝑜в

𝑍𝑍���𝑄𝑄�� � �𝑍𝑍����𝑍𝑍����𝑄𝑄�� � ������
��                              (44) 

 Solving the system of algebraic equations (45), we find the values 𝑜𝑜𝑜𝑜𝑄𝑄����� 𝑄𝑄��: 

  𝑄𝑄�� � � �����������
∆�

�����
�� 𝜇𝜇𝐷𝐷𝐷𝐷 � ����

∆�
�����
�� 𝜇𝜇𝐷𝐷𝐷𝐷 � ����������∆���

∆� 𝑓𝑓��         (45)               

𝑄𝑄�� � �����
∆�

�����
�� � ����

∆�
�����
�� � ����

∆� 𝑓𝑓��                                 (46) 
here ∆�� ��𝑍𝑍����𝑍𝑍��� � 𝑍𝑍���𝑍𝑍��� � 𝑍𝑍���𝑍𝑍���� 

 𝑇𝑇𝑇𝑇𝑇𝑞𝑞𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣���� are based on (44): 
    𝑄𝑄�� � 𝑄𝑄�� � 𝑄𝑄�� � �����

∆�
�����
�� 𝜇𝜇𝐷𝐷𝐷𝐷 � �����������

∆�
�����
�� 𝜇𝜇𝐷𝐷𝐷𝐷 � ����∆��

∆� 𝑓𝑓��        (47)     
 Differentiating (42) and (43) by 𝑥𝑥 and substituting them in (46), (47) and (48), we obtain: 

𝑄𝑄�� �  �������
�������������������

∆� � 𝐴𝐴�𝛾𝛾�𝑒𝑒��� � ��������������������������
∆� � 𝐴𝐴�𝛾𝛾�𝑒𝑒���� �

� ��������������������������
∆� � 𝐴𝐴�𝛾𝛾�𝑒𝑒��� � ��������������������������

∆� � 𝐴𝐴�𝛾𝛾�𝑒𝑒���� �
�����������

∆� 𝑓𝑓в                                                                                    (48) 

𝑄𝑄�� � ��𝑍𝑍���𝑛𝑛
��� � 𝑍𝑍���𝑚𝑚���

∆� � 𝐴𝐴�𝛾𝛾�𝑒𝑒��� � �𝑍𝑍���𝑛𝑛
��� � 𝑍𝑍���𝑚𝑚���

∆� � 𝐴𝐴�𝛾𝛾�𝑒𝑒���� � 

�������������������
∆� � 𝐴𝐴�𝛾𝛾�𝑒𝑒��� � ������������������

∆� � 𝐴𝐴�𝛾𝛾�𝑒𝑒���� � ����
∆� 𝑓𝑓в       (49)  

𝑄𝑄�� �  ��������������
������������

∆� � 𝐴𝐴�𝛾𝛾�𝑒𝑒��� � ��������������������������
∆� � 𝐴𝐴�𝛾𝛾�𝑒𝑒���� �

� ��������������������������
∆� � 𝐴𝐴�𝛾𝛾�𝑒𝑒��� � ��������������������������

∆� � 𝐴𝐴�𝛾𝛾�𝑒𝑒���� � ����
∆� 𝑓𝑓в (50)  

 In order to simplify the analysis of the magnetic circuit under consideration, we accept 
the following conditions: 

𝑍𝑍���� � 𝑍𝑍���� � 𝑍𝑍���� � 𝑍𝑍��� 𝐶𝐶�������� � 𝐶𝐶�������� � 𝐶𝐶����           (51)   
should be noted that for most EFCs with a ring channel, conditions (52) are satisfied. 

Taking into account (52), the roots of the characteristic equation (41) take the following 
form: 

𝑘𝑘�� � �𝛾𝛾� � �𝑍𝑍��𝐶𝐶���     𝑘𝑘�� � �𝛾𝛾� � �𝑍𝑍��𝐶𝐶���                      (52) 
The values of the coefficients 𝑚𝑚��� � 𝑚𝑚��� and 𝑛𝑛��� � 𝑛𝑛������ determined by sequentially 

substituting the roots 𝐾𝐾𝐾𝐾�𝐾𝐾 �  � � into the following system of equations and solving it 
with respect to mi , Ni𝑚𝑚���, 𝑛𝑛���: 

��𝑎𝑎�� � 𝑘𝑘���𝑚𝑚��� � 𝑎𝑎��𝑛𝑛��� � 
𝑎𝑎��𝑚𝑚��� � �𝑎𝑎�� � 𝑘𝑘���𝑛𝑛��� �                                      (53) 

𝑚𝑚��� �     𝑚𝑚��� �     𝑚𝑚��� �     𝑚𝑚��� �                            (54) 
𝑛𝑛��� �     𝑛𝑛��� �     𝑛𝑛��� � �    𝑛𝑛��� � �                        (55) 

Substituting (55) and (56) in (42) and (43), respectively, we obtain the following 
expressions for the magnetic stresses: 

  𝑈𝑈��� � 𝐴𝐴�𝑒𝑒��� � 𝐴𝐴�𝑒𝑒���� � 𝐴𝐴�𝑒𝑒��� � 𝐴𝐴�𝑒𝑒����,                                  (56) 
  𝑈𝑈��� � 𝐴𝐴�𝑒𝑒��� � 𝐴𝐴�𝑒𝑒���� � 𝐴𝐴�𝑒𝑒��� � 𝐴𝐴�𝑒𝑒����                                  (57) 

Taking into account (52), (55) and (56) equations (49), (50) and (51) takes the following 
form: 

𝑄𝑄�� � ��
���� 𝐴𝐴�𝐴𝐴𝑒𝑒

��� � ��
���� 𝐴𝐴��𝑒𝑒

���� � ��
��� 𝐴𝐴����𝑒𝑒

��� � ��
��� 𝐴𝐴��𝑒𝑒

���� � �
���� 𝑓𝑓��, (58)         

   𝑄𝑄�� � ���
���� 𝐴𝐴�𝐴𝐴𝑒𝑒

��� � ���
���� 𝐴𝐴��𝑒𝑒

���� � �
���� 𝑓𝑓��,                                  (59)  

𝑄𝑄�� � � ��
���� 𝐴𝐴�𝐴𝐴𝑒𝑒

��� � ��
���� 𝐴𝐴��𝑒𝑒

���� � ��
��� 𝐴𝐴����𝑒𝑒

��� � ��
��� 𝐴𝐴��𝑒𝑒

���� � �
���� 𝑓𝑓��   (60)   

 The integration constants 𝐴𝐴�� � 𝐴𝐴�� are determined using the following boundary 
conditions: (Figure 4): 

     𝑈𝑈����𝑥𝑥���� � 𝑄𝑄��𝑊𝑊�� � 𝑄𝑄���𝑍𝑍���        𝑄𝑄���𝑥𝑥����� �          (61)   
    𝑈𝑈����𝑥𝑥���� � 𝑄𝑄��𝑊𝑊�� � 𝑄𝑄���𝑍𝑍���  𝑈𝑈����𝑥𝑥����м � �𝑄𝑄���𝑥𝑥����м𝑍𝑍���    (62)  

here 𝑄𝑄��� � 𝑄𝑄���𝑥𝑥����� 𝑄𝑄� � 𝑄𝑄���𝑥𝑥����; 𝑄𝑄��� � 𝑄𝑄���𝑥𝑥���� 𝑍𝑍���, 𝑍𝑍��� and 𝑍𝑍��� – 
magnetic resistance of the magnetic circuit sections “ab”, “cd” and “de”, respectively. If 
condition (52) is met we can assume 𝑍𝑍�� � 𝑍𝑍��� � 𝑍𝑍��. 

4 Conclusion 
Expressions are mathematical models of a two-circuit EFC magnetic circuit with ring 
channels, taking into account the distribution of parameters in both circuits of the circuit.  

Thus, the paper develops mathematical models of single-and multi-circuit EFC magnetic 
circuits with distributed parameters. They can be used to determine the design parameters of 
magnetic circuits and study the static and dynamic characteristics of EFC with ring channels. 
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