
On the problem of calculating steady state 
modes of electric power systems under 
conditions of interval data uncertainty 

Alimzhan Ibragimov1, Talatjon Mamurov1, and Orifjon Fozilov2 
1Faculty of Mathematics and Informatics, Navoi State Pedagogical Institute, 210100, Navoi, 
Uzbekistan 

2Department of Higher Mathematics and IT, Navoi State University of Mining and Technologies, 
210100, Navoi, Uzbekistan 

Abstract. Currently, there are several approaches for dealing with 
uncertain (inaccurate) data. The main ones are methods of probabilistic 
analysis, fuzzy set theory and interval analysis. In this paper, we consider 
the problem of calculating the parameters of steady-state modes of electric 
power systems with interval uncertainty of the initial data. The main reasons 
and the relevance of the use of interval methods for calculating the 
parameters of steady-state modes of networks of electrical systems are 
described. First, an interval calculation model is formulated, and then some 
interval iterative methods for solving nonlinear nodal equations of electrical 
networks are studied. Algorithms for the interval methods of Gauss-Seidel 
and Newton-Raphson are proposed for solving nonlinear nodal equations of 
steady state electrical networks. To demonstrate the level of efficiency of 
the developed algorithms, several test calculations were carried out with 
interval parameters formed through the middle and radius of the interval. 
The results of numerical calculations using these methods show that the 
Newton-Raphson method is superior to the Gauss-Seidel method in terms of 
the number of iterations and optimality (with a smaller width) of interval 
solutions. 

1 Introduction 
The steady-state mode of the electrical network is understood as such a normal or post-
emergency mode in which currents, voltages and powers in its elements are taken unchanged. 
The calculation of the steady state implies the determination of these currents, voltages and 
powers that characterize the mode of the electrical network are called mode parameters. 

Calculations of steady-state conditions are the main task in the management and analysis 
of the functioning of electric power systems (EPS). Most of the existing calculation methods 
are based on a deterministic representation of the initial data [1-3]. Indeed, these methods do 
not describe the real situation, i.e. when using these methods, we will make certain 
assumptions. Most of the parameters for calculating the steady-state modes of the EPS have 
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an uncertainty limited from below and from above, i.e. the values of these parameters 
fluctuate at a known amplitude, in other words, they are non-deterministic. 

The problem of non-deterministic data occurs in solving a number of theoretical and 
practical problems. This problem is especially prominent when modeling electrical networks 
[4-9]. 

Recently, when solving problems with non-deterministic data, methods of interval 
analysis are increasingly used. These methods make it possible to naturally separate 
deterministic parameters from non-deterministic ones already at the stage of mathematical 
model synthesis. They operate with non-deterministic quantities, namely, interval quantities 
without any approximation within a certain structure and on the basis of a suitable calculus. 
As a consequence, the results themselves are obtained in the form of intervals, which, as a 
rule, has quite meaningful interpretations in the problems under study. In this regard, the 
problem of synthesizing mathematical models for the problem of calculating steady-state 
modes of EES, with a logically justified interval of a specific value, as well as the 
development and justification of the corresponding interval algorithms and software, is very 
relevant. Since the model should be resolved within the interval approach. In the 
mathematical modeling of complex systems and processes with non-deterministic 
parameters, probabilistic-statistical methods are traditionally used. Recently, due to the 
relative limitations and observed, in some cases, inadequacy of probabilistic-statistical 
models, researchers are turning to the methods of fuzzy set theory and methods of interval 
analysis, since these theories suggest the possibility of implementing a full cycle of 
computational experiments within the framework of the corresponding calculus. Of course, 
each of these approaches has its own advantages and disadvantages. 

The advantages of interval methods include such facts as the relative similarity with the 
real case of the formalization of the verbally posed problem, the ability to save in some cases 
the prescriptions of the components of interval algorithms, as well as the applicability of 
software for solving purely real problems, which allows this approach to automatically take 
into account rounding errors. In general, interval algorithms allow, within the framework of 
a unified calculation of intervals, to take into account all kinds of errors and obtain solutions 
to problems in the form of interval objects that are guaranteed to contain the desired exact 
solutions. 

2 Interval notation and Interval arithmetic 
An informal draft of the international standard [10], developed by leading specialists in the 
field of interval analysis, was adopted to designate interval values. According to this project, 
in order to distinguish from point (non-interval) values, interval values are highlighted in the 
text in bold italic type. 

An interval number (or sometimes called a real interval) is defined as  
 [ , ] |a a x R a x a    a ,     (1) 

and the set of interval numbers for classical interval arithmetic is denoted as IR . In (1) the 
real numbers a  and a  are respectively the lower and upper bounds of the interval a . 

The main characteristic functions of the real interval are defined as follows: 
 The interval width is defined as wid = a aa ; 

 The interval radius is calculated as  1rad
2

= a aa ; 

 The middle of the interval is defined as  1mid
2

= a aa ; 
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It is known that in the calculations of the steady-state modes of the EPS, the design 
parameters, in the general case, take on complex values. In interval analysis, rectangular and 
circular complex intervals are most often used as complex intervals [11, 12]. The 
corresponding sets are denoted by rectIC  and circIC . Further, we will consider intervals 
only from rectIC , since for brevity we denote this set simply by IC : 

 1 2 1 2 1 1 2 2| ,i a a ia C a a       a a a a a  
for real intervals 1 2, IRa a . 

Similarly to the real case, we introduce the corresponding arithmetic operations and 
functions for complex intervals: 
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Definition 1. Let 1 2i IC  a a a . Then the quantity 2 2
1 2| | | | | | a a a  is called the 

absolute value or the modulus of the complex interval a . 
Definition 2. Let 1 2i IC  a a a . Then the radius of the complex interval a  is the 

quantity 1 2rad rad rad a a a . 
Definition 3. Let 1 2i IC  a a a . Then the width of the complex interval a  is the value 

1 2wid wid wid a = a a . 

Let us introduce the Hausdorff metric [5] in the space nIC . 
Definition 4. Let 1 2 1 2[ , ], [ , ]a a b b IC a b = . Then the distance between elements a  

and b  is entered as follows: 
 1 1 2 2dist ( ) : =max | |, | | .a b a b a,b  

Definition 5. Let 1 2 1 2[ , ], [ , ] nx x y y IR x y = . Then the metric on the 
multidimensional interval space for the vectors x  and y  is defined as: 

 1 1 2 2dist ( ) : =max || ||, || || ,x y x y x, y  

where   is the absolute vector norm in nR . 

Definition 6. Let 1 2 1 2, ni i IC   x x x y = y y . Then the metric on the space nIC  
for the vectors x  and y  is defined by the relation: 

1 1 2 2dist ( ) : =dist( , ) dist( , ).x y x yx, y  
To get acquainted with the basics of interval analysis, you can refer to the site [13] 

called "Interval analysis and its applications", developed by the professor of Novosibirsk 
State University S.P. Shary. This website contains extensive resources and hyperlinks on 
various aspects of interval analysis and its applications. 
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3 Mathematical models for calculating steady-state modes of EPS 

3.1 Real model 

The problem of steady state modes of electric power systems is reduced to solving a system 
of nonlinear algebraic equations with complex coefficients [1, 2]. They are usually called the 
equation of state in the form of a balance of currents connecting currents and voltages in the 
nodes of an electrical network: 

0 0 1 , ,  ,,i j i i iY U Y U I i n       (3) 
where ijY  is a matrix of mutual conductivities, iU  are voltages and iI  are currents of nodes, 

0iY  is a matrix-column of conductivities of communication branches of a balancing node 
with other nodes, and 0U  is a voltage of a balancing node. 

However, in real calculations of modes in EPS nodes, instead of currents, the 
corresponding powers iS  of generators and loads are used, determined with active iP  and 
reactive powers iQ : 

, 1, , .i i iS P jQ i n     
According to formula ˆS UI   , we have 

ˆ
, 1, ,ˆ

i
i

i

S
I i n

U
 


 


,                (4) 

where ˆˆ ˆ, ,I S U   are complex conjugate numbers for complex-valued parameters , ,I S U  , 
respectively. Then equation (3) has the following form: 

0 0

ˆ
1, , .ˆ ,i

i j i i

i

S
Y U Y U i n

U
 


  


        (5) 

System (5) is a direct form for describing nonlinear nodal equations; there is also an 
inverted form, i.e. the nonlinear system of nodal equations are described using the matrix of 
nodal resistances, which is inverse to the matrix of nodal conductivities 1Z Y  :  

0 0

ˆ
1, , .ˆ ,i

i i i j

i

S
U A U Z i n

U
 


  


             (6) 

The main difference between these two forms of writing (5) and (6) is related to the 
features of the matrices Y  and Z , i.e. the Y  matrix is sparse, it has a large number of zero 
elements, and in the Z  matrix, almost all elements can be non-zero. The advantages of form 
(5) are explained by the fact that this case makes it possible to save computer memory and it 
is possible to develop the most efficient calculation algorithms that take into account the 
sparseness of the matrix, since this leads to a reduction in the time complexity of calculations. 
In case (6), the inverse matrix Z  has a larger number of non-zero elements, which requires 
a large amount of memory, in addition, the calculation in this case has an oscillatory nature 
of convergence, sometimes the iterative process diverges. These shortcomings limit the 
possibilities of using form (6) for calculating the steady state modes of the EPS main network. 

The calculation according to the inverted form (6) is effective when the calculation is 
repeated for the same system many times, as well as in the calculation of short-circuit 
currents. 

Due to the nonlinearity of the steady state equations, they are usually solved only by 
approximations, i.e. iterative methods. This raises the question of the convergence of the 
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repeated for the same system many times, as well as in the calculation of short-circuit 
currents. 

Due to the nonlinearity of the steady state equations, they are usually solved only by 
approximations, i.e. iterative methods. This raises the question of the convergence of the 

iterative process and the existence of a solution. Also, given the large dimension of the 
problem, there are certain difficulties in choosing iterative procedures. 

The main stages in the calculation of the steady state mode of the EPS are: 
1) creating a matrix of nodal conductivities (to create this matrix, you can use the 

technique from [14]); 
2) setting the initial data for the required variables, i.e. node voltages (in this case, you 

can take the nominal values of the node voltage); 
3) calculation of power imbalance values; 
4) creation of the Jacobian matrix; 
5) solution of the formed system of linear equations; 
6) determination of new values for voltage and phase angles of voltage; 
7) checking the conditions for terminating the calculation, if a solution with the 

required accuracy is not found, then return to step 3. 

3.2 Interval model 

The main reason for creating mathematical models for calculating the steady state modes of 
EPS within the framework of interval analysis is the emerging limited uncertainties in the 
system parameters. For example, parameters that can change due to seasonal, climatic and 
other reasons, leads us to consider interval models of this problem [6]. Since when designing 
or studying the functioning of an EPS, various uncertainties appear, caused by the following 
main reasons: 

 approximate mathematical models are used to describe EPS processes; 
 initial data in mathematical models are either unknown or approximate; 
 approximate methods are used to solve the problem of EPS calculation; 
 in the process of calculation on a computer, a rounding error occurs. 

A convenient and simpler way to formalize such uncertainties is to use interval calculation 
methods. 

So, let's write equation (5) in interval form: 

0 0

ˆ
1, 2 , , .ˆ ,i

i j i i

i

U Y U i n
U

 


  


S
Y   (7) 

In the interval equation of steady states, the parameters are given by intervals, and the 
operations are replaced by operations of interval arithmetic. 

4 Interval iterative methods for solving the nodal equations of 
EPS 
Classical (deterministic) calculation methods do not make it possible to take into account the 
uncertainties of the parameters. So, with a deterministic approach, inaccuracies in setting 
certain parameters are practically not taken into account, or, taking into account certain 
assumptions or assumptions, uncertain parameters are replaced by expert estimates or 
average values. 

Currently, there are a large number of point methods for solving nonlinear systems of 
nodal equations of EPS, which can be classified as Newton, Seidel, optimization type 
methods, as well as methods using expansions in a Taylor series. They cannot be used directly 
for interval data due to the nature of interval operations. In interval methods, we can vary not 
only the choice of a point from a given interval, which the expansion is carried out in the 
neighborhood of this point, but also the form of the interval expansion of derivatives and the 
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method of external estimation of the set of solutions of intermediate interval linear systems 
[15], to which the solution bar is estimated. 

4.1 Algorithm for solving interval nonlinear systems of nodal equations by the 
Gauss-Seidel method 

One of the most popular and effective algorithms for solving interval non-linear systems of 
nodal equations in the form of current balance (7) is the interval Gauss-Seidel method (IGS 
method) [8]. According to this method, the determination of the interval values of the 
voltages of the nodes i

U  sequentially from each i-th equation (7) using the methods of 
interval arithmetic leads to the iterative formula 

1
( 1) ( ) ( 1) ( )

0 0
( )1 1

ˆ1 , 1, 2, ,ˆ
i n

k k k k i
i i i ij j ij j

kj j iii i

i n


 

  

 
     
 
 

 


     


S
U U Y U Y U Y U

Y U
,    (8) 

where ( )k
i
U  and ( 1)k

i
U  are the voltage values of the nodes, respectively, at the k-th and k+1-

th iterations. 
The iterative process continues until the condition  ( 1) ( ) ( 1)=dist ,k k k

i i iU   U U  is met, 
where   is the required accuracy. 

In the algorithm that we present for the Gauss-Seidel interval method, we assume that the 
intervals of the calculation parameters are specified through the center and radius of the 
interval in percentages: [mid rad , mid rad ]  a a a a a . For example, a point value of 

0 220U  , then 5% interval width would be equal to 
   0 220 0.05* 220, 220 0.05* 220 219.94, 220.06   U . 

Thus, we formulate the algorithm of the interval Gauss-Seidel method in the form of 
pseudocodes. 

Algorithm 1 (IGS method) 
1:    Input of initial data: 

a) circuit data: , , ,ij ij ij ijR X Bc Kt ; 
b) mode data: 0, , ,j j nP Q U U ; 

2:    Formation of the design equivalent scheme, taking into account the spread of the 
values of the design parameters; 
3:    Entering the required precision and maximum iteration value: max, i ; 
4:    1i  ; 
5:    Determining the values of voltage increments ( 1)k

iU   at the nodes of the circuit using 
the ISLAE solution: 0 0ij i i i Y U Y U I ; 
6:    Calculation of new voltage values in circuit nodes: 

        1 1k k k k
i i i iU   U U U ; 

7:    if maxi i  then stop; 
8:    else if  ( ) ( 1)dist ,k k

i i  U U  then  
                     output of calculation results: , , , , , ,i ij ij ji ji ij ijP Q U P Q P Q ; 
9:            else 1i i  ; goto 5; 
10:   end if. 
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3:    Entering the required precision and maximum iteration value: max, i ; 
4:    1i  ; 
5:    Determining the values of voltage increments ( 1)k

iU   at the nodes of the circuit using 
the ISLAE solution: 0 0ij i i i Y U Y U I ; 
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10:   end if. 

In Algorithm 1, active ijR  and reactive ijX  resistances, conductivity ijBc , transformation 
ratio ijKt  for network sections are used as circuit data. Also, mode data are entered for nodes, 
such as active jP  and reactive jQ  powers of load nodes, the value of nominal nU  and 
balancing voltage 0U  of the node. 

4.2 Interval Newton-Raphson (INR) method for solving nonlinear nodal 
equations of EPS 

The most universal and suitable for solving a large class of nonlinear equations is the 
Newton–Raphson method. 

According to this method, the determination of unknown parameters (voltages at the 
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In this case, the voltage increments at the iteration step are determined by solving the 
linear system of equations (11). In expressions (12)-(13), the calculation of iG  and iB  is 
usually calculated according to the formulas [1]: 

   ' 2 ''2 ' '' ' 2 ''2 ' ''

4 4

2 2
,i i i i i i i i i i i i

i i
i i

P U U QU U Q U U PU U
G B

U U
   

  .          (14) 

The main advantage of the Newton-Raphson method is its fast convergence, when even 
the first approximation can give a satisfactory result. The application of this method to other 
forms of nonlinear nodal equations is described in detail in the book [14]. 

The algorithm for iterative solution of interval systems of nonlinear nodal equations is 
practically similar to the algorithm for iterative solution of a nonlinear system of equations 
with deterministic coefficients, except that all calculations must be carried out in accordance 
with the operations of interval arithmetic. 

Verification of convergence by the interval method of Newton-Raphson is carried out by 
the condition: 
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where   mid ,iW P U  and   mid ,iW Q U  are the average values of the interval values of 
the power imbalance equations; and   is the required calculation accuracy. We also 
formulate the algorithm of the Newton-Raphson interval method in the form of pseudocodes. 

Algorithm 2 (INR method) 
1:    Input of initial data: 

a) circuit data: , , ,ij ij ij ijR X Bc Kt ; 
b) mode data: 0, , ,j j nP Q U U ; 

2:    Formation of the design equivalent scheme, taking into account the spread of the 
values of the design parameters; 
3:    Entering the required precision and maximum iteration value: max, i ; 
4:    1i  ; 
5:    Calculation of interval values:    , , , and ( )W W JP U Q U U ; 

6:    if 
   
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7:        Output of calculation results: , , , , , ,i ij ij ji ji ij ijP Q U P Q P Q ; 
8:        Determining the values of voltage increments ( 1)k

iU   at the nodes of the circuit 
using the ISLAE solution: 0 0ij i i i Y U Y U I ; 
9:          Calculation of new voltage values in circuit nodes: 

        1 1k k k k
i i i iU   U U U ; 

10:  else if maxi i  then goto 5; 
9:            else stop; 
10:          end if; 
11:   end if. 

As it can be seen from the algorithms of both methods, at each iteration step, they involve 
the solution of interval linear systems of equations. They can be solved, for example, using 
the interval methods of Gauss, Krawczyk and Hansen-Bliek-Rohn. [12, 17]. 

To identify the most acceptable of them, a series of calculations were carried out using 
each of the methods. As an example of calculations using these methods, we present the 
results for various intervals for a 4-nodal scheme. 
Table 1. Estimated calculations of interval methods for solving ISLAE for small values of intervals. 

Nodes 
Voltage Gauss Method Krawczyk Method Hansen-Bliek-Rohn 

Method 

 U  U  U  U  U  U  
U1re 0 0 0 0 0 0 
U1im 0 0 0 0 0 0 
U2re -9.4004 7.2846 -1.3510 -0.9167 -1.3527 -0.9062 
U2im -5.8626 8.7387 0.6383 0.9277 0.6303 0.9300 
U3re -0.0907 0.1175 -0.0147 0.0118 -0.0149 0.0121 
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the power imbalance equations; and   is the required calculation accuracy. We also 
formulate the algorithm of the Newton-Raphson interval method in the form of pseudocodes. 

Algorithm 2 (INR method) 
1:    Input of initial data: 

a) circuit data: , , ,ij ij ij ijR X Bc Kt ; 
b) mode data: 0, , ,j j nP Q U U ; 

2:    Formation of the design equivalent scheme, taking into account the spread of the 
values of the design parameters; 
3:    Entering the required precision and maximum iteration value: max, i ; 
4:    1i  ; 
5:    Calculation of interval values:    , , , and ( )W W JP U Q U U ; 

6:    if 
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7:        Output of calculation results: , , , , , ,i ij ij ji ji ij ijP Q U P Q P Q ; 
8:        Determining the values of voltage increments ( 1)k

iU   at the nodes of the circuit 
using the ISLAE solution: 0 0ij i i i Y U Y U I ; 
9:          Calculation of new voltage values in circuit nodes: 

        1 1k k k k
i i i iU   U U U ; 

10:  else if maxi i  then goto 5; 
9:            else stop; 
10:          end if; 
11:   end if. 

As it can be seen from the algorithms of both methods, at each iteration step, they involve 
the solution of interval linear systems of equations. They can be solved, for example, using 
the interval methods of Gauss, Krawczyk and Hansen-Bliek-Rohn. [12, 17]. 

To identify the most acceptable of them, a series of calculations were carried out using 
each of the methods. As an example of calculations using these methods, we present the 
results for various intervals for a 4-nodal scheme. 
Table 1. Estimated calculations of interval methods for solving ISLAE for small values of intervals. 

Nodes 
Voltage Gauss Method Krawczyk Method Hansen-Bliek-Rohn 

Method 

 U  U  U  U  U  U  
U1re 0 0 0 0 0 0 
U1im 0 0 0 0 0 0 
U2re -9.4004 7.2846 -1.3510 -0.9167 -1.3527 -0.9062 
U2im -5.8626 8.7387 0.6383 0.9277 0.6303 0.9300 
U3re -0.0907 0.1175 -0.0147 0.0118 -0.0149 0.0121 

U3im -2.5101 9.3175 3.3618 3.7961 3.3513 3.7978 
U4re -2.4835 7.3577 0.6136 0.9030 0.6056 0.9053 
U4im 0.0502 0.2006 0.0883 0.1144 0.0876 0.1145 

Table 2. Estimated calculations of interval methods for solving ISLAE for large values of intervals. 

Nodes 
Voltage Gauss Method Krawczyk Method Hansen-Bliek-Rohn 

Method 

 U  U  U  U  U  U  
U1re 0 0 0 0 0 0 
U1im 0 0 0 0 0 0 
U2re -45.4586 41.9069 -1.6926 -0.6106 -Inf Inf 
U2im -31.8765 43.6184 0.4426 1.1469 -Inf Inf 
U3re -0.4452 0.5999 -0.0348 0.0319 -Inf Inf 
U3im -23.4152 24.0702 3.0551 4.1371 -Inf Inf 
U4re -5.7805 34.6850 0.4173 1.1216 -Inf Inf 
U4im 0.0165 0.5271 0.0704 0.1344 -Inf Inf 

 
The calculation results showed that the Krawczyk method turned out to be the most 

suitable method. The results obtained by the Gauss method are much broader than other 
methods. For large intervals of initial data, the Hansen-Bliek-Rohn method does not give a 
solution. 

5 Numerical results of calculations of steady-state modes of 
control circuits 
Using the algorithms proposed above in the GNU Octave software environment [18, 19], a 
program was developed for calculating the steady-state modes of the main EPS networks, 
taking into account the interval uncertainty of the initial parameters. 

As an example, we present the calculations of the 14-node IEEE test circuit [20, 21] 
(Figure 1). 

 

Fig. 1. IEEE 14 bus test system. 
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Interval initial data are formed through the radius of the interval (in percent (%), relative 
to the center of the interval), for example, as indicated in Table 3. The initial data for the 
scheme are presented in Tables 4 and 5. 

Table 3. Formation of interval parameters in percentage terms. 

Schematic Parameter Interval Width Mode parameter interval width 
 rad R   rad X   rad Bc   rad U   rad P   rad Q  

0 % 0 % 0 % 5 % 5 % 5 % 

Table 4. Initial data on the branches of the 14 nodal test circuit. 

Branch 
number 

Begin End R  
(Ohm) 

X  
(Ohm) 

310Gk 
(Sm) 

310Bc 
(Sm) 

'Kt  ''Kt  

1 1 2 1.93 5.92 0 0.528 1 0 
2 1 5 5.403 22.3 0 0.492 1 0 
3 2 3 4.699 19.8 0 0.438 1 0 
4 2 4 5.811 17.63 0 0.374 1 0 
5 2 5 5.695 17.39 0 0.34 1 0 
6 3 4 6.701 17.1 0 0.346 1 0 
7 4 5 1.335 4.21 0 0.128 1 0 
8 4 7 0 20.91 0 0 1.02 0 
9 4 9 0 55.62 0 0 1.02 0 

10 5 6 0 25.2 0 0 1.02 0 
11 6 11 9.498 19.89 0 0 1 0 
12 6 12 12.291 25.58 0 0 1 0 
13 6 13 6.615 13.03 0 0 1 0 
14 7 8 0 17.61 0 0 1 0 
15 7 9 0 11 0 0 1 0 
16 9 10 3.181 8.45 0 0 1 0 
17 9 14 12.711 27.04 0 0 1 0 
18 10 11 8.205 19.21 0 0 1 0 
19 12 13 22.092 19.99 0 0 1 0 
20 13 14 17.093 34.8 0 0 1 0 

Table 5. Initial data on nodes 14 nodal test circuit. 

Nodes Generation + Load 
nU  - Nominal voltage 

№ Type P  Q  
1 3 0 0 220 
2 2 -18.3 12.7 220 
3 2 94.2 19 220 
4 1 47.8 3.9 220 
5 1 7.6 1.6 220 
6 2 30 30 220 
7 1 0 0 220 
8 2 29.5 35.6 220 
9 1 9 5.8 220 

10 1 6.1 1.6 220 
11 1 13.5 5.8 220 
12 1 3.5 1.8 220 
13 1 0 0 220 
14 1 14.9 0 220 
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17 9 14 12.711 27.04 0 0 1 0 
18 10 11 8.205 19.21 0 0 1 0 
19 12 13 22.092 19.99 0 0 1 0 
20 13 14 17.093 34.8 0 0 1 0 

Table 5. Initial data on nodes 14 nodal test circuit. 

Nodes Generation + Load 
nU  - Nominal voltage 

№ Type P  Q  
1 3 0 0 220 
2 2 -18.3 12.7 220 
3 2 94.2 19 220 
4 1 47.8 3.9 220 
5 1 7.6 1.6 220 
6 2 30 30 220 
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For these schemes, a series of calculations were carried out for different values of the 
initial data intervals. As an illustration of the results of calculations for both methods, we 
present at 5% interval width (Figures 2-3). In this case, the numerical results were obtained 
in the Gauss-Seidel interval method in 7 iterations, and in the Newton-Raphson interval 
method in 1 iteration. 

 

 
Fig. 2. The result of applying the Gauss-Seidel method at 5% interval width. 

 
Fig. 3. The result of applying the Newton-Raphson method at 5% interval width. 
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According to the results of calculations, it can be concluded that the voltage values at the 
nodes distant from the balancing node are the most dependent on the change in the load in 
the circuit, and the nodes located near are the least. 

The boundaries of the interval values of voltages in the nodes obtained by the Newton-
Raphson method are better than the values obtained by the Gauss-Seidel method. This is due 
to the small number of iterations of calculations, as well as the calculation of the values of 
the power imbalance equations and the values of the elements of the Jacobi matrix using the 
average values of the interval voltages at the nodes, which is necessary to exclude division 
by zero containing the interval. 

6 Conclusion 
The available initial information for performing calculations of steady state modes of electric 
power systems is always non-deterministic, i.e. is incomplete or limitedly reliable. 

Interval models using external interval estimation adequately approximate the possible 
areas of change in the voltage modules of electrical networks for given intervals of variation 
of the initial data. On the basis of interval modeling, important information for designers can 
be obtained about the ranges of possible changes in operating parameters; in particular, in the 
calculation example, the values of voltage deviations that go beyond the permissible limits 
are obtained. Also, by means of interval simulation of loads, it is possible to obtain an integral 
assessment of power quality indicators based on voltage deviations and unbalance. This does 
not require the implementation of multi-stage procedures of statistical and simulation 
modeling. Accounting for the uncertainty of the initial data in the calculation of emergency 
modes of electric power systems can be performed based on the methods of interval analysis. 

In this paper, two of the most popular iterative methods for calculating the steady state 
modes of electric power systems are investigated. An analysis of the numerical results shows 
that the voltage intervals found using the Newton–Raphson method have a smaller width than 
the resulting intervals of the Gauss–Seidel method. This difference is due to a small number 
of iterations, the calculation of the values of the power imbalance equations and the values 
of the elements of the Jacobi matrix using the average values of the interval voltages at the 
nodes at the iteration step. 
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