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Abstract. The paper considers the problem of dynamic joint work of a 
structure with a base during seismic actions propagating from the level of a 
mountain massif through a layered group medium in the direction of the 
structure. The main attention is focused on the extreme case of vertically 
propagating transverse seismic waves, their reflections and transitions 
through the layered medium of the soil. Wave equations of elasticity theory 
are used to describe dynamic processes.  

1 Introduction 
The problems of wave propagation in continuous multilayer systems attract the attention of 
numerous researchers in our country and abroad [1, 2]. This is due to the fact that in many 
fields of science and technology, it is increasingly necessary to face the need to calculate 
stress and strain fields that occur in layered bodies with different rheological properties when 
exposed to various kinds of dynamic loads. Dynamic problems of dissipative (viscoelastic) 
dynamical systems are solved by methods of mathematical physics [3, 4]. The complexity of 
their solution is explained by many reasons, for example, rheological properties of real media 
(anisotropy, viscosity, creep, plasticity, non-homogeneity, etc.), which causes a wide variety 
of schematized models to describe real phenomena in one or another approximation and does 
not allow creating a single mathematical model of a mechanical system [5-7]. Despite the 
large number of mathematical models of a mechanical system, mathematical methods for 
solving problems have been developed mainly for such systems as acoustic, whose elastic 
motions are described by linear differential equations [8-10]. 

2 Materials and methods 
The problem of dynamic joint work of the structure with the base under seismic influences 
propagating from the level of the mountain massif through the layered group medium in the 
direction of the structure and transitions through the layered soil medium is considered 
(Figure 1). 

 
 

* Corresponding author: ztursinboyeva@mail.ru 

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons 
Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/).

E3S Web of Conferences 417, 06002 (2023)	 https://doi.org/10.1051/e3sconf/202341706002
GEOTECH-2023



 
 
 

 
 
 

 
 

 

Fig. 1. The transition of transverse waves of the boundary of the soil layers. 

Attention is focused on the extreme case of the action of vertically propagating transverse 
seismic waves, their reflection. The equations of motion of wave propagation have the 
following form: 
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Where G  – shift modulus;   – the density of the material. The solution of the differential 
equation (1) is sought in the following form [11]  
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The solution is designed for an n  – layer system. The changes in time of incoming and 
outgoing waves from the granule layers, on the rock and on the ground surface are 
investigated. For one and two-layer systems, the solution is adapted for the computational 
point of view of a less difficult version, in which changes in the time of oscillations at the 
level of the rock mass and on the ground surface are investigated. 
 

 
 
 

 
 

 
 
 

 

 
 

Fig. 2. The transition of transverse waves of a multilayer medium.  
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The construction structure is a rigid foundation with horizontally acting seismic 
movement, designed for two versions. In the first case, the vibrations of a rigid foundation 
are solved in the classical way, i.e. separately when loaded by seismic acceleration on the 
ground surface  x t   
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The second version is that the loading seismic acceleration  x t  also takes into account 
the actions of secondary reflected disturbances in the ground environment caused by the 
oscillation of the structure. The solution of foundation vibrations is carried out using the 
equations 
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where 11 12 21 22, , ,k k k k  – damping coefficients; 11 12 21 22, , ,C C C C   – the coefficient of rigidity. 

3 Results and analysis 
Equations (3) are linear equations and are easily solved analytically. The calculation results 
are presented in Table 1. 

Table 1. Change of movement, speed and acceleration depending on. 

  
310u m  1/ 10um s  2/um s 410grad 

0.30 
0.15 
0.0 

0.206 
0.198 
0.210 

0.047 
0.058 
0.079 

0.238 
0.256 
0.288 

0.128 
0.136 
0.146 

The following initial data were used for numerical calculations: 
max0.005 ; 0.005; 5.t s j     Thus, the paper has developed a method for calculating a 

multilayer foundation under the influence of seismic waves. 
Vibrations of the base are one of the main tasks that have a comprehensive technical 

application, such as: foundations for walls, various types of construction of road surfaces and 
airfields, etc. The vertical and torsional vibrations of the elastic half-space were considered 
in [1-3]. In this paper, solutions of vertical and torsional vibrations of a viscoelastic half-
space are proposed when applying the idea of complex elastic modules. For a vertical 
dynamic load uniformly distributed over a circular contact cavity with radiusa , i.e. for 
boundary conditions on the surface of a half-space at z 0 :   

iwt
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z rz0; 0   , r a.  
Assume that the vertical normal load 1Р  is distributed over a circular cavity according to 

the static contact problem, hence the boundary conditions: 
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z rzs  0;s  0;   for r .a  
The vertical dynamic deflection w  on the surface of the half - space has the following 

form: 
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In equations (4) 
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- Bessel functions of the first and zero 

order. 
Integral functions in the relations are complex functions of the real variable , and have 

no discontinuities in the domain of integration, and improper integrals converge. Vertical 
oscillations of mass m with a circular contact plane – diameter a  on a viscoelastic half-space 
are described by differential equations of motion. 

2

02 ( ) iwtd wm R t Pe
dt

                          (5) 

Where  R t - the reaction of the viscoelastic half-space and w , in the case of a rigid 
foundation block, represents the average dynamic deflection at the contact of the cavity. The 
average dynamic deflection from the load and reactions of the base has the following form. 
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In a similar way, with torsional oscillations of a viscoelastic half-space with a linear 

distribution of shear stresses on a circular cavity of radius a , a conclusion is made for the 
tangential displacement 0u  on the surface of the half-space in the form of the following 
relation 
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where 0  - the amplitude of dynamic shear stresses on the surface at 1,    r a a f  is  
2 2 2
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Figure 3 shows the amplitude-frequency characteristic of the vertical mass 
0
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P

  

oscillation on a viscoelastic half-space for the value of the Poisson's ratio of the base material 
0.25 and the attenuation parameter 0.2. The real part of the elastic modulus of the 

base material G  was assumed to be constant, independent of frequency. A replacement 
system with one degree of freedom, equivalent to the action of mass on a viscoelastic half-
space, can be determined in the same way as in [12, 13] from the conditions of equality of 
the coordinates of the resonant extreme of both systems. 
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Fig. 3. Amplitude –frequency characteristic of vertical mass oscillation on a viscoelastic half-space. 

4 Conclusion  
The change of the parameter on which the amplitude of the half-space displacements so 
significantly depends is investigated. A methodology and algorithm for studying the dynamic 
characteristics of a half-space have been developed. 
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