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Abstract. The article considers the problem of propagation of proper 
normal waves in a two-layer pipe, paying to attention the rheological 
properties of the material. The main purpose of the work is to develop a 
methodology, an algorithm for investigation the problems of wave 
propagation in extended two-layer dissipatively inhomogeneous cylindrical 
structures. The main integro-differential equations in the article are obtained 
on the basis of methods of the theory of visco-elasticity. In the course of the 
study, the method of separation of variables, the freezing method, the Muller 
method and the Godunov orthogonal run method were used. In this paper, 
for structurally inhomogeneous extended cylindrical mechanical systems, 
the dependences of several modes (three and four) of the complex phase 
velocity (real and imaginary parts) on the wave number are comparatively 
estimated; the results of calculations are compared with experimental and 
theoretical data of other researchers, and the use of asymptotic and 
numerical methods for solving dispersion equations with complex output 
parameters is justified.  

1 Introduction 
The problems of wave propagation in continuous multilayer systems attract the attention of 
numerous researchers in our country and abroad. This is due to the fact that in many fields of 
science and technology, it is increasingly necessary to face the need to calculate stress and 
strain fields that occur in layered bodies with different rheological properties when exposed 
to various kinds of dynamic loads [1,2]. Dynamic problems of dissipative (viscoelastic) 
dynamical systems are solved by methods of mathematical physics. The complexity of their 
solution is explained by many factors, such as rheological properties of media (anisotropy, 
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viscosity, creep, plasticity, heterogeneity, etc.), which generates a wide variety of models for 
describing real phenomena and does not allow creating a single mathematical model of the 
process in a mechanical system. Despite the large number of mathematical models of a 
mechanical system, mathematical methods for solving problems have been developed mainly 
for such systems as acoustic, whose elastic motions are described by linear differential 
equations [3,4]. In [5,6,7], an attempt was made to determine and optimize the dissipative 
characteristics, as well as the stress-strain states of mechanical systems. In the works 
mentioned above, two modes of operation of the system are considered - natural and forced 
oscillations. Natural oscillations mean movements in which all points of the system oscillate 
with the same frequencies and damping indicators (but with different amplitudes). In the 
mathematical formulation of the problem of excitation and propagation of waves in an 
extended elastic plate body, certain problems with boundary conditions at infinity appear.  
Sommerfeld radiation conditions do not always provide a unique solution to the problem. 
Also, when taking into account Rayleigh waves that propagate in space, we again have to 
estimate free waves at infinity. Changes in the physical properties of the material add 
additional difficulties. Similar difficulties arise in the propagation of normal waves in 
waveguides with variable cross-sections. When the cross-section of the plate is constant, 
studies on wave propagation were carried out in [8,9]. In a number of works, theoretical and 
experimental studies on the propagation of the phase velocity of natural waves, as well as the 
group velocity, depending on the physical properties of the material, were carried out on the 
basis of numerical methods [10]. Based on this, the equation of motion for the propagation 
of waves in the plate and shell are obtained to simplify the tasks. 

In some papers [11, 12], the characteristics of normal modes of natural waves in extended 
elastic plate bodies were investigated. In [13], the properties of normal modes of natural 
waves in plate deformable bodies have a number of features that have no analogue for modes 
in acoustic and electromagnetic waveguides. 

2 Methods 

2.1 Problem statement and solution methods 

Consider a two-layer viscoelastic pipe (Figure 1) with internal 
 

 
Fig. 1. Calculation scheme. 

The radius𝑟𝑟�, the outer radius𝑟𝑟� , and the radius of the boundary between layers 𝑟𝑟� . In a 
cylindrical coordinate system, the axis is directed along the central axis of the cylinder. The 
cross-sectional space of the pipe is given in the form 𝑟𝑟� � 𝑟𝑟 � 𝑟𝑟�, which is denoted by  𝐼𝐼, the 
second, outer cylinder is given with radii 𝑟𝑟� � 𝑟𝑟 � 𝑟𝑟�, and is denoted by 𝐼𝐼𝐼𝐼 .  
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The radius𝑟𝑟�, the outer radius𝑟𝑟� , and the radius of the boundary between layers 𝑟𝑟� . In a 
cylindrical coordinate system, the axis is directed along the central axis of the cylinder. The 
cross-sectional space of the pipe is given in the form 𝑟𝑟� � 𝑟𝑟 � 𝑟𝑟�, which is denoted by  𝐼𝐼, the 
second, outer cylinder is given with radii 𝑟𝑟� � 𝑟𝑟 � 𝑟𝑟�, and is denoted by 𝐼𝐼𝐼𝐼 .  

The basic equations of motion of a two-layer pipe are given by three groups of linear 
relations of the theory of viscoelasticity [14-15] 
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(2) 
𝑣𝑣� is the Poisson's ratio, 𝑅𝑅���𝑡𝑡 � 𝜏𝜏� is the relaxation cernel, 𝐸𝐸��is the instantaneous modulus 
of elasticity [14], 𝜙𝜙�𝑡𝑡�is the arbitrary function of time.  

Then we apply the freezing method 
𝜆𝜆�� � 𝜆𝜆���1 � Γ��С �𝜔𝜔�� � 𝑑𝑑Γ��� �𝜔𝜔��� � 𝜆𝜆��Γ��; 
�̄�𝜇� � 𝜇𝜇���1 � Γ��С �𝜔𝜔�� � 𝑑𝑑Γ��� �𝜔𝜔��� � 𝜇𝜇��Γ��, 

𝜆𝜆�� � �����
������������� , 𝜇𝜇�� � �����

�������,                             (3) 
instantaneous Lame coefficients.  The calculations used a three-parameter Koltunov-
Rzhanitsyn relaxation kernel.  

Boundary conditions: 
𝜎𝜎��|𝑟𝑟 � 𝑟𝑟� � 𝜎𝜎��|𝑟𝑟 � 𝑟𝑟� � 𝜎𝜎��|𝑟𝑟 � 𝑟𝑟� � 0, 
𝜎𝜎��|𝑟𝑟 � 𝑟𝑟� � 𝜎𝜎��|𝑟𝑟 � 𝑟𝑟� � 𝜎𝜎��|𝑟𝑟 � 𝑟𝑟� � 0,                                    (4) 

𝜎𝜎�����|𝑟𝑟 � 𝑟𝑟� � 𝜎𝜎�����|𝑟𝑟 � 𝑟𝑟�,𝜎𝜎�����|𝑟𝑟 � 𝑟𝑟� � 𝜎𝜎�����|𝑟𝑟 � 𝑟𝑟�,𝜎𝜎�����|𝑟𝑟 � 𝑟𝑟� � 𝜎𝜎�����|𝑟𝑟 � 𝑟𝑟�, 
𝑢𝑢��|𝑟𝑟 � 𝑟𝑟� � 𝑢𝑢��|𝑟𝑟 � 𝑟𝑟�,𝑢𝑢��|𝑟𝑟 � 𝑟𝑟� � 𝑢𝑢��|𝑟𝑟 � 𝑟𝑟�,𝑢𝑢��|𝑟𝑟 � 𝑟𝑟� � 𝑢𝑢��|𝑟𝑟 � 𝑟𝑟�. 

For pipe displacements, the Green–Lame decomposition is valid [2]: 
𝑢𝑢�⃗ � � �𝑟𝑟�𝑑𝑑𝜑𝜑� � 𝑟𝑟�𝑡𝑡𝑑𝑑�⃗ �,𝑑𝑑𝑑𝑑𝑣𝑣𝑑𝑑�⃗ � � 0, 

where  𝑢𝑢�⃗ ��𝑢𝑢��,𝑢𝑢��,𝑢𝑢��� is the displacement vector of the medium, φn and  𝑑𝑑�⃗ �𝑑𝑑��,𝑑𝑑��,𝑑𝑑��� 
- are the potentials of longitudinal and transverse waves. Then the equations of motion of a 
two-layer pipe (1), taking into account (2)-(4) with respect to potential functions, in a 
cylindrical coordinate system take the following form: 

Г���• ∇�𝜑𝜑� � 1
𝑐𝑐���

∂�𝜑𝜑�
∂𝑡𝑡� � 0, 

Г��• ∇�𝑑𝑑�� � �
����

�����
��� � 0,                            (5) 

Г���∇�𝑑𝑑�� � 𝑑𝑑��
𝑟𝑟� � 2

𝑟𝑟�
∂𝑑𝑑��
∂𝜃𝜃 � � 1

𝑐𝑐����
∂�𝑑𝑑��
∂𝑡𝑡� � 0, 

Г���∇�𝑑𝑑�� � 𝑑𝑑��
𝑟𝑟� � 2

𝑟𝑟�
∂𝑑𝑑��
∂𝜃𝜃 � � 1

𝑐𝑐����
∂�𝑑𝑑��
∂𝑡𝑡� � 0. 

whereГ��к• � 1 � Γ��кС �𝜔𝜔�� � 𝑑𝑑Γ��к� �𝜔𝜔��,Г�к• � 1 � Γ�кС �𝜔𝜔�� � 𝑑𝑑Γ�к� �𝜔𝜔��; Γ���С �𝜔𝜔��, 
Γ��к� �𝜔𝜔��, Γ�кС �𝜔𝜔��,Γ��� �𝜔𝜔�� accordingly, the sine and cosine Fourier images of relaxation 
kores are determined similarly (5);𝑐𝑐��� � �𝜆𝜆�� � 2𝜇𝜇���/𝜌𝜌�, 𝑐𝑐��� � 𝜇𝜇��/𝜌𝜌� - are the 
longitudinal and transverse wave propagation velocities.  

The solution of the system (5) is sought in the form 
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𝜑𝜑��𝑟𝑟,𝜃𝜃, 𝑧𝑧, 𝑡𝑡� � �𝜙𝜙�
∞

���
�𝛼𝛼�𝑟𝑟� �𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐 𝜃𝜃�𝑐𝑐𝑠𝑠𝑠𝑠 𝑐𝑐 𝜃𝜃� 𝑒𝑒

�����𝑒𝑒����; 

𝜓𝜓���𝑟𝑟,𝜃𝜃, 𝑧𝑧, 𝑡𝑡� � �Ψ���𝛽𝛽�𝑟𝑟� �𝑐𝑐𝑠𝑠𝑠𝑠 𝑐𝑐 𝜃𝜃�𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐 𝜃𝜃� 𝑒𝑒
�����𝑒𝑒����;

∞

���
 

𝜓𝜓���𝑟𝑟,𝜃𝜃, 𝑧𝑧, 𝑡𝑡� � �Ψ���𝛽𝛽�𝑟𝑟� �𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐 𝜃𝜃�𝑐𝑐𝑠𝑠𝑠𝑠 𝑐𝑐 𝜃𝜃� 𝑒𝑒
�����𝑒𝑒����;

∞

���
 

𝜓𝜓���𝑟𝑟,𝜃𝜃, 𝑧𝑧, 𝑡𝑡� � ∑ Ψ���𝛽𝛽�𝑟𝑟� �𝑐𝑐𝑠𝑠𝑠𝑠 𝑐𝑐 𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐 𝜃𝜃� 𝑒𝑒
�����𝑒𝑒����;∞���         (6) 

where 𝑐𝑐 is an integer;  𝛾𝛾� � 𝜔𝜔/𝑐𝑐  - wave number;  𝜔𝜔 � 𝜔𝜔� � 𝑠𝑠𝜔𝜔� -complex natural 
frequency; 𝑟𝑟 � ��

�� , 𝑧𝑧 � ��
��. Substituting (6) into the equation of motion (5), we obtain the 

following expression   𝜙𝜙�,𝜓𝜓��,𝜙𝜙��,𝜙𝜙��: 
����
��� � �

�
���
�� � �𝛼𝛼�� � ��

���𝜙𝜙� � 0,                                     (7) 
𝑑𝑑�Ψ��
𝑑𝑑𝑟𝑟� � 1

𝑟𝑟
𝑑𝑑Ψ��
𝑑𝑑𝑟𝑟 � �𝛽𝛽�� � 𝑐𝑐�

𝑟𝑟��Ψ�� � 0, 
��Ψ��
��� � �

�
�Ψ��
�� � �

�� ��𝑐𝑐�Ψ�� � 2𝑐𝑐Ψ�� � Ψ��� � 𝛽𝛽��Ψ�� � 0,              (8) 
��Ψ��
��� � �

�
�Ψ��
�� � �

�� ��𝑐𝑐�Ψ�� � 2𝑐𝑐Ψ�� � Ψ��� � 𝛽𝛽��Ψ�� � 0,    (9) 
where 

𝛼𝛼�� � Ω��

𝛾𝛾��� � 𝛾𝛾��,Ω�� � 𝜔𝜔𝑟𝑟�
𝑐𝑐��� ;  𝛾𝛾��� � 2�1 � 𝜈𝜈���Γ���

1 � 2𝜈𝜈�� , 
𝛽𝛽�� � Ω��/𝛾𝛾��� � 𝛾𝛾��, 𝛾𝛾��� � Γ��. 

Subtracting and adding the last two equations (8) and (9), we get: 
 

𝑑𝑑�
𝑑𝑑𝑟𝑟� �Ψ�� � Ψθ�� �

1
𝑟𝑟
𝑑𝑑
𝑑𝑑𝑟𝑟 �Ψ�� � Ψθ�� � �𝛽𝛽�� � �𝑐𝑐 � 1��

𝑟𝑟� � �Ψ�� � Ψθ�� � 0, 
��
��� �Ψ�� � Ψθ�� �

�
�
�
�� �Ψ�� � Ψθ�� � �𝛽𝛽�� � ������

�� � �Ψ�� � Ψθ�� � 0. (10) 
Solutions of equations (7)-(9) have the form: 

𝜙𝜙��𝑟𝑟� � 𝐴𝐴��𝑍𝑍��𝛼𝛼�𝑟𝑟� � 𝐴𝐴��𝑊𝑊��𝛼𝛼�𝑟𝑟�; 
Ψ���𝑟𝑟� � 𝐴𝐴��𝑍𝑍��𝛽𝛽�𝑟𝑟� � 𝐴𝐴��𝑊𝑊��𝛽𝛽�𝑟𝑟�; 
Ψ���𝑟𝑟� � Ψθ��𝑟𝑟� � 2𝐴𝐴��𝑍𝑍����𝛽𝛽�𝑟𝑟� � 2𝐴𝐴��𝑊𝑊����𝛽𝛽�𝑟𝑟�; 
Ψ���𝑟𝑟� � Ψθ��𝑟𝑟� � 2𝐴𝐴���𝑍𝑍����𝛽𝛽�𝑟𝑟� � 2𝐴𝐴���𝑊𝑊����𝛽𝛽�𝑟𝑟�; 𝜙𝜙��𝑟𝑟� � 𝐴𝐴��𝑍𝑍��𝛼𝛼�𝑟𝑟� � 𝐴𝐴��𝑊𝑊��𝛼𝛼�𝑟𝑟�; 
Ψ���𝑟𝑟� � 𝐴𝐴��𝑍𝑍��𝛽𝛽�𝑟𝑟� � 𝐴𝐴���𝑊𝑊��𝛽𝛽�𝑟𝑟�; 
Ψ���𝑟𝑟� � Ψθ��𝑟𝑟� � 2𝐴𝐴���𝑍𝑍����𝛽𝛽�𝑟𝑟� � 2𝐴𝐴���𝑊𝑊����𝛽𝛽�𝑟𝑟�; 

Ψ���𝑟𝑟� � Ψθ��𝑟𝑟� � 2𝐴𝐴���𝑍𝑍��𝛽𝛽�𝑟𝑟� � 2𝐴𝐴���𝑊𝑊����𝛽𝛽�𝑟𝑟�,                (11) 
Based on the assumption given in [3]: 

Ψ�� � �Ψ��,Ψ�� � �Ψ��. 
To determine arbitrary constants from𝐴𝐴��. . . . ,𝐴𝐴��� (11), we use contact and boundary 

conditions (2).  
Then 

𝜎𝜎��� � ���������� � ����
�� � �

�
��θ�
�θ � ���

� � � 2�̄�𝜇� ����
�� ;                            (12) 

𝜎𝜎�θ� � 𝜇𝜇����
����
�θ � ����

�� � �θ�
� �;                                 (13) 

𝜎𝜎��� � 𝜇𝜇�������� � ��θ�
�� �.                                14) 
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𝜑𝜑��𝑟𝑟,𝜃𝜃, 𝑧𝑧, 𝑡𝑡� � �𝜙𝜙�
∞

���
�𝛼𝛼�𝑟𝑟� �𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐 𝜃𝜃�𝑐𝑐𝑠𝑠𝑠𝑠 𝑐𝑐 𝜃𝜃� 𝑒𝑒

�����𝑒𝑒����; 

𝜓𝜓���𝑟𝑟,𝜃𝜃, 𝑧𝑧, 𝑡𝑡� � �Ψ���𝛽𝛽�𝑟𝑟� �𝑐𝑐𝑠𝑠𝑠𝑠 𝑐𝑐 𝜃𝜃�𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐 𝜃𝜃� 𝑒𝑒
�����𝑒𝑒����;

∞

���
 

𝜓𝜓���𝑟𝑟,𝜃𝜃, 𝑧𝑧, 𝑡𝑡� � �Ψ���𝛽𝛽�𝑟𝑟� �𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐 𝜃𝜃�𝑐𝑐𝑠𝑠𝑠𝑠 𝑐𝑐 𝜃𝜃� 𝑒𝑒
�����𝑒𝑒����;

∞

���
 

𝜓𝜓���𝑟𝑟,𝜃𝜃, 𝑧𝑧, 𝑡𝑡� � ∑ Ψ���𝛽𝛽�𝑟𝑟� �𝑐𝑐𝑠𝑠𝑠𝑠 𝑐𝑐 𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐 𝜃𝜃� 𝑒𝑒
�����𝑒𝑒����;∞���         (6) 

where 𝑐𝑐 is an integer;  𝛾𝛾� � 𝜔𝜔/𝑐𝑐  - wave number;  𝜔𝜔 � 𝜔𝜔� � 𝑠𝑠𝜔𝜔� -complex natural 
frequency; 𝑟𝑟 � ��

�� , 𝑧𝑧 � ��
��. Substituting (6) into the equation of motion (5), we obtain the 

following expression   𝜙𝜙�,𝜓𝜓��,𝜙𝜙��,𝜙𝜙��: 
����
��� � �

�
���
�� � �𝛼𝛼�� � ��

���𝜙𝜙� � 0,                                     (7) 
𝑑𝑑�Ψ��
𝑑𝑑𝑟𝑟� � 1

𝑟𝑟
𝑑𝑑Ψ��
𝑑𝑑𝑟𝑟 � �𝛽𝛽�� � 𝑐𝑐�

𝑟𝑟��Ψ�� � 0, 
��Ψ��
��� � �

�
�Ψ��
�� � �

�� ��𝑐𝑐�Ψ�� � 2𝑐𝑐Ψ�� � Ψ��� � 𝛽𝛽��Ψ�� � 0,              (8) 
��Ψ��
��� � �

�
�Ψ��
�� � �

�� ��𝑐𝑐�Ψ�� � 2𝑐𝑐Ψ�� � Ψ��� � 𝛽𝛽��Ψ�� � 0,    (9) 
where 

𝛼𝛼�� � Ω��

𝛾𝛾��� � 𝛾𝛾��,Ω�� � 𝜔𝜔𝑟𝑟�
𝑐𝑐��� ;  𝛾𝛾��� � 2�1 � 𝜈𝜈���Γ���

1 � 2𝜈𝜈�� , 
𝛽𝛽�� � Ω��/𝛾𝛾��� � 𝛾𝛾��, 𝛾𝛾��� � Γ��. 

Subtracting and adding the last two equations (8) and (9), we get: 
 

𝑑𝑑�
𝑑𝑑𝑟𝑟� �Ψ�� � Ψθ�� �

1
𝑟𝑟
𝑑𝑑
𝑑𝑑𝑟𝑟 �Ψ�� � Ψθ�� � �𝛽𝛽�� � �𝑐𝑐 � 1��

𝑟𝑟� � �Ψ�� � Ψθ�� � 0, 
��
��� �Ψ�� � Ψθ�� �

�
�
�
�� �Ψ�� � Ψθ�� � �𝛽𝛽�� � ������

�� � �Ψ�� � Ψθ�� � 0. (10) 
Solutions of equations (7)-(9) have the form: 

𝜙𝜙��𝑟𝑟� � 𝐴𝐴��𝑍𝑍��𝛼𝛼�𝑟𝑟� � 𝐴𝐴��𝑊𝑊��𝛼𝛼�𝑟𝑟�; 
Ψ���𝑟𝑟� � 𝐴𝐴��𝑍𝑍��𝛽𝛽�𝑟𝑟� � 𝐴𝐴��𝑊𝑊��𝛽𝛽�𝑟𝑟�; 
Ψ���𝑟𝑟� � Ψθ��𝑟𝑟� � 2𝐴𝐴��𝑍𝑍����𝛽𝛽�𝑟𝑟� � 2𝐴𝐴��𝑊𝑊����𝛽𝛽�𝑟𝑟�; 
Ψ���𝑟𝑟� � Ψθ��𝑟𝑟� � 2𝐴𝐴���𝑍𝑍����𝛽𝛽�𝑟𝑟� � 2𝐴𝐴���𝑊𝑊����𝛽𝛽�𝑟𝑟�; 𝜙𝜙��𝑟𝑟� � 𝐴𝐴��𝑍𝑍��𝛼𝛼�𝑟𝑟� � 𝐴𝐴��𝑊𝑊��𝛼𝛼�𝑟𝑟�; 
Ψ���𝑟𝑟� � 𝐴𝐴��𝑍𝑍��𝛽𝛽�𝑟𝑟� � 𝐴𝐴���𝑊𝑊��𝛽𝛽�𝑟𝑟�; 
Ψ���𝑟𝑟� � Ψθ��𝑟𝑟� � 2𝐴𝐴���𝑍𝑍����𝛽𝛽�𝑟𝑟� � 2𝐴𝐴���𝑊𝑊����𝛽𝛽�𝑟𝑟�; 

Ψ���𝑟𝑟� � Ψθ��𝑟𝑟� � 2𝐴𝐴���𝑍𝑍��𝛽𝛽�𝑟𝑟� � 2𝐴𝐴���𝑊𝑊����𝛽𝛽�𝑟𝑟�,                (11) 
Based on the assumption given in [3]: 

Ψ�� � �Ψ��,Ψ�� � �Ψ��. 
To determine arbitrary constants from𝐴𝐴��. . . . ,𝐴𝐴��� (11), we use contact and boundary 

conditions (2).  
Then 

𝜎𝜎��� � ���������� � ����
�� � �

�
��θ�
�θ � ���

� � � 2�̄�𝜇� ����
�� ;                            (12) 

𝜎𝜎�θ� � 𝜇𝜇����
����
�θ � ����

�� � �θ�
� �;                                 (13) 

𝜎𝜎��� � 𝜇𝜇�������� � ��θ�
�� �.                                14) 

Substituting (11) into the functions (12)-(14), and taking into account the relations (3), 
(5) and (6), we obtain:  
𝜎𝜎��� � ��������� � 𝛾𝛾���𝜙𝜙� � 2�̄�𝜇� �𝜙𝜙�″ � �

� �Ψ�′ �
�
�Ψ��� � 𝛾𝛾�Ψ��′ �� 𝑐𝑐��� �θ�������������,   

(15) 
𝜎𝜎�θ� � �̄�𝜇� ���� �

�
� 𝜙𝜙� � 𝜙𝜙�′ � � ����Ψ��′ � 2Ψ��� � 𝛾𝛾� �Ψ��′ �

���
� Ψ���� ���� �θ�������������,        (16) 

𝜎𝜎��� � �̄�𝜇� ��2𝛾𝛾�𝜙𝜙�′ � ���
� Ψ�� � �

� Ψ��
′ � ��������� � ��� �

𝛾𝛾���Ψ��� 𝑐𝑐��� �θ�������������.    (17) 
Substituting (11), (15) - (16) in condition (2), we get the system оf equations. From the 

condition of existence of a nontrivial solution of a system of homogeneous algebraic 
equations, we obtain equation  

�𝑐𝑐��� � 0
 where 𝑐𝑐����, � � 1,2. . ,12� are the coefficients determining the dispersion equation, calculated 

as follows: 
𝑐𝑐�,� � 𝑍𝑍�' ���𝑟𝑟��; 𝑐𝑐�,� � 𝑊𝑊�' ���𝑟𝑟��; 𝑐𝑐�,� � 𝛾𝛾�𝑍𝑍������𝑟𝑟��; 
𝑐𝑐�,� � 𝛾𝛾�𝑊𝑊������𝑟𝑟��; 𝑐𝑐�,� � �𝑘𝑘/𝑟𝑟��𝑍𝑍����𝑟𝑟��; 
𝑐𝑐�,� � �𝑘𝑘/𝑟𝑟��𝑊𝑊����𝑟𝑟��; 𝑐𝑐�,� � �𝑍𝑍�' ���𝑟𝑟��; 
𝑐𝑐�,� � �𝑊𝑊�'���𝑟𝑟��; 𝑐𝑐�,� � �𝛾𝛾𝑍𝑍������𝑟𝑟��; 
𝑐𝑐�,�� � �𝛾𝛾�𝑊𝑊������𝑟𝑟�; 𝑐𝑐�,�� � ��𝑘𝑘/𝑟𝑟��𝑍𝑍����𝑟𝑟�; 
𝑐𝑐�,�� � ��𝑘𝑘/𝑟𝑟��𝑍𝑍����𝑟𝑟�; 
     𝑐𝑐�,� � ��𝑘𝑘/𝑟𝑟��𝑍𝑍����𝑟𝑟��; 𝑐𝑐�,� � ��𝑘𝑘/𝑟𝑟��𝑊𝑊����𝑟𝑟��; 

𝑐𝑐�,� � 𝛾𝛾�𝑍𝑍������𝑟𝑟��; 𝑐𝑐�,� � 𝛾𝛾�𝑊𝑊������𝑟𝑟��; 
𝑐𝑐�,� � �𝑍𝑍���' ���𝑟𝑟��; 𝑐𝑐�,� � �𝑊𝑊���' ���𝑟𝑟��; 
𝑐𝑐�,� � �𝑘𝑘/𝑟𝑟��𝑍𝑍����𝑟𝑟��; 𝑐𝑐�,� � �𝑘𝑘/𝑟𝑟��𝑊𝑊����𝑟𝑟��; 
𝑐𝑐�,� � �𝛾𝛾�𝑍𝑍������𝑟𝑟��; 𝑐𝑐�,�� � �𝛾𝛾�𝑊𝑊������𝑟𝑟��; 
𝑐𝑐�,�� � 𝑍𝑍�' ���𝑟𝑟��; 𝑐𝑐�,�� � 𝑊𝑊�' ���𝑟𝑟��; 
𝑐𝑐�,� � �𝛾𝛾�𝑍𝑍����𝑟𝑟��;𝑎𝑎�,� � �𝛾𝛾�𝑊𝑊����𝑟𝑟��; 
𝑐𝑐�,� � ���𝑘𝑘 � 1�/𝑟𝑟��𝑍𝑍������𝑟𝑟�� � 𝑍𝑍���' ���𝑟𝑟��; 
𝑐𝑐�,� � ���𝑘𝑘 � 1�/𝑟𝑟��𝑊𝑊������𝑟𝑟�� �𝑊𝑊���' ���𝑟𝑟��; 
𝑐𝑐�,� � 𝛾𝛾�𝑍𝑍����𝑟𝑟��;𝑎𝑎�,� � 𝛾𝛾�𝑊𝑊����𝑟𝑟�; 
𝑐𝑐�,� � ��𝑘𝑘 � 1�/𝑟𝑟��𝑍𝑍������𝑟𝑟�� � 𝑍𝑍���' ���𝑟𝑟��; 
𝑐𝑐�,�� � ��𝑘𝑘 � 1�/𝑟𝑟��𝑊𝑊������𝑟𝑟�� �𝑊𝑊���' ���𝑟𝑟��; 
𝑐𝑐�,�� � 0;𝑎𝑎�,�� � 0;𝑎𝑎�,� � 0;𝑎𝑎�,� � 0; 
𝑐𝑐�,� � �������� � 𝛾𝛾���𝑍𝑍����𝑟𝑟�� � 2�̄�𝜇�𝑍𝑍�'' ���𝑟𝑟�; 
𝑐𝑐�,� � �������� � 𝛾𝛾���𝑊𝑊����𝑟𝑟� � 2�̄�𝜇�𝑊𝑊�''���𝑟𝑟�; 
𝑐𝑐�,� � 2�̄�𝜇�𝛾𝛾�𝑍𝑍���' ���𝑟𝑟��;𝑎𝑎�,� � 2�̄�𝜇�𝛾𝛾�𝑊𝑊���' ���𝑟𝑟��; 

𝑐𝑐�,� � 2�̄�𝜇��𝑘𝑘/𝑟𝑟���𝑍𝑍���' ���𝑟𝑟�� � �1/𝑟𝑟��𝑍𝑍����𝑟𝑟���; 
𝑐𝑐�,� � 2�̄�𝜇��𝑘𝑘/𝑟𝑟���𝑊𝑊���' ���𝑟𝑟�� � �1/𝑟𝑟��𝑊𝑊����𝑟𝑟���; 
𝑐𝑐�,� � ������� � 𝛾𝛾���𝑍𝑍����𝑟𝑟�� � 2�̄�𝜇�𝑍𝑍�'' ���𝑟𝑟��; 
𝑐𝑐�,� � ������� � 𝛾𝛾���𝑊𝑊����𝑟𝑟�� � 2�̄�𝜇�𝑊𝑊�''���𝑟𝑟��; 
𝑐𝑐�,� � �2�̄�𝜇�𝛾𝛾�𝑊𝑊���' ���𝑟𝑟��; 𝑐𝑐�,�� � �2�̄�𝜇�𝛾𝛾�𝑊𝑊���' ���𝑟𝑟��; 
𝑐𝑐�,�� � �2�̄�𝜇��𝑘𝑘/𝑟𝑟���𝑍𝑍���' ���𝑟𝑟�� � �1/𝑟𝑟��𝑍𝑍������𝑟𝑟���; 
𝑐𝑐�,�� � �2�̄�𝜇��𝑘𝑘/𝑟𝑟���𝑊𝑊���' ���𝑟𝑟�� � �1/𝑟𝑟��𝑊𝑊������𝑟𝑟���; 

     𝑐𝑐�,� � 2�̄�𝜇��𝑘𝑘/𝑟𝑟����1/𝑟𝑟��𝑍𝑍����𝑟𝑟�� � 𝑍𝑍�' ���𝑟𝑟���; 
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𝑐𝑐�,� � 2�̄�𝜇��𝑘𝑘/𝑟𝑟����1/𝑟𝑟��𝑊𝑊��𝛼𝛼�𝑟𝑟�� �𝑊𝑊�' �𝛼𝛼�𝑟𝑟���; 
𝑐𝑐�,� � �̄�𝜇�𝛾𝛾��𝑘𝑘/𝑟𝑟���𝑍𝑍���' �𝛽𝛽�𝑟𝑟�� � ��𝑘𝑘 � 1�/𝑟𝑟��𝑍𝑍����𝛽𝛽�𝑟𝑟���; 
𝑐𝑐�,� � �̄�𝜇�𝛾𝛾��𝑘𝑘/𝑟𝑟���𝑊𝑊���' �𝛽𝛽�𝑟𝑟�� � ��𝑘𝑘 � 1�/𝑟𝑟��𝑊𝑊����𝛽𝛽�𝑟𝑟���; 
𝑐𝑐�,� � �̄�𝜇��𝛽𝛽��𝑍𝑍��𝛽𝛽�𝑟𝑟�� � 𝑍𝑍�' �𝛽𝛽�𝑟𝑟���; 
𝑐𝑐�,� � �̄�𝜇��𝛽𝛽��𝑊𝑊��𝛽𝛽�𝑟𝑟�� �𝑊𝑊�' �𝛽𝛽�𝑟𝑟���; 
𝑐𝑐�,� � �2�̄�𝜇��𝑘𝑘/𝑟𝑟����1/𝑟𝑟��𝑍𝑍��𝛼𝛼�𝑟𝑟�� � 𝑍𝑍�' �𝛼𝛼�𝑟𝑟���; 
𝑐𝑐�,� � �2�̄�𝜇��𝑘𝑘/𝑟𝑟����1/𝑟𝑟��𝑊𝑊��𝛼𝛼�𝑟𝑟�� �𝑊𝑊�' �𝛼𝛼�𝑟𝑟���; 
𝑐𝑐�,� � ��̄�𝜇�𝛾𝛾��𝑍𝑍���' �𝛽𝛽�𝑟𝑟�� � ��𝑘𝑘 � 1�/𝑟𝑟��𝑍𝑍����𝛽𝛽�𝑟𝑟���; 
𝑐𝑐�,�� � �̄�𝜇�𝛾𝛾��𝑊𝑊���' �𝛽𝛽�𝑟𝑟�� � ��𝑘𝑘 � 1�/𝑟𝑟��𝑊𝑊����𝛽𝛽�𝑟𝑟���; 
𝑐𝑐�,�� � �̄�𝜇��𝛽𝛽��𝑍𝑍��𝛽𝛽�𝑟𝑟�� � 𝑍𝑍�' �𝛽𝛽�𝑟𝑟���; 
𝑐𝑐�,�� � �̄�𝜇��𝛽𝛽��𝑊𝑊��𝛽𝛽����� �𝑊𝑊�' �𝛽𝛽������; 

                                   𝑐𝑐�,� � �2�̄�𝜇�𝛾𝛾��𝑍𝑍�' �𝛼𝛼�𝑟𝑟���; 
𝑐𝑐�,� � �2�̄�𝜇�𝛾𝛾��𝑊𝑊�' �𝛼𝛼�𝑟𝑟��; 
𝑐𝑐�,� � ��̄�𝜇���𝑘𝑘/𝑟𝑟��𝑍𝑍���' �𝛽𝛽�𝑟𝑟�� � ���𝑘𝑘� � 𝑘𝑘 � 1/𝑟𝑟���� � 𝛽𝛽�� � 𝛾𝛾���𝑍𝑍���' �𝛽𝛽�𝑟𝑟���; 
𝑐𝑐�,� � ��̄�𝜇���𝑘𝑘/𝑟𝑟��𝑊𝑊���' �𝛽𝛽�𝑟𝑟�� � ���𝑘𝑘� � 𝑘𝑘 � 1/𝑟𝑟���� � 𝛽𝛽�� � 𝛾𝛾���𝑊𝑊���' �𝛽𝛽�𝑟𝑟���; 

    𝑐𝑐�,� � ��̄�𝜇��𝑘𝑘𝛾𝛾�/𝑟𝑟��𝑍𝑍��𝛽𝛽�𝑟𝑟��; 𝑐𝑐�,� � ��̄�𝜇��𝑘𝑘𝛾𝛾�/𝑟𝑟��𝑊𝑊��𝛽𝛽�𝑟𝑟��; 
𝑐𝑐�,� � 2�̄�𝜇�𝛾𝛾��𝑘𝑘𝛾𝛾�/𝑟𝑟��𝑍𝑍�' �𝛼𝛼�𝑟𝑟��; 𝑐𝑐�,� � 2�̄�𝜇�𝛾𝛾��𝑘𝑘𝛾𝛾/𝑟𝑟��𝑊𝑊�' �𝛼𝛼�𝑟𝑟��; 
𝑐𝑐�,� � �̄�𝜇���𝑘𝑘/𝑟𝑟��𝑍𝑍���' �𝛽𝛽�𝑟𝑟�� � ���𝑘𝑘� � 𝑘𝑘 � 1/𝑟𝑟���� � 𝛽𝛽�� � 𝛾𝛾���𝑍𝑍����𝛽𝛽�𝑟𝑟���; 
𝑐𝑐�,�� � �̄�𝜇���𝑘𝑘/𝑟𝑟��𝑊𝑊���' �𝛽𝛽�𝑟𝑟�� � ���𝑘𝑘� � 𝑘𝑘 � 1/𝑟𝑟���� � 𝛽𝛽�� � 𝛾𝛾���𝑊𝑊����𝛽𝛽�𝑟𝑟���, 
𝑐𝑐�,�� � �̄�𝜇�𝛾𝛾��𝑘𝑘𝛾𝛾�/𝑟𝑟��𝑍𝑍��𝛽𝛽�𝑟𝑟��; 
𝑐𝑐�,�� � �̄�𝜇�𝛾𝛾��𝑘𝑘𝛾𝛾�/𝑟𝑟��𝑊𝑊��𝛽𝛽�𝑟𝑟��. 

The other elements of the main determinant are defined similarly. 

3 Results and analysis 
After simple transformations, we obtain a dispersion equation, which is solved numerically 
by the Muller method on complex arithmetic. 

To obtain numerical results for a two-layer viscoelastic pipe, the following parameter 
values are taken: 

Dт=50mm, Dи=5mm, the outer pipe is made of X12 steel:𝜇𝜇� � 80 ⋅ 10�𝑃𝑃𝑃𝑃,𝜌𝜌� �7800𝑘𝑘𝑘𝑘/𝑚𝑚�.   the inner pipe is made of 30L steel: 𝜇𝜇� � 70 ⋅ 10�𝑃𝑃𝑃𝑃,𝜌𝜌� � 7500𝑘𝑘𝑘𝑘/𝑚𝑚�. As an example of a viscoelastic material, we take the Koltunov - Rzhanitsyn relaxation 
core: 𝑅𝑅к�𝑡𝑡� � 𝐴𝐴к𝑒𝑒��к�/𝑡𝑡���к, with parameters:𝐴𝐴к � 0,048; 𝛽𝛽к � 0,05; 𝛼𝛼к � 0,1 
(k=1,2). Figure 2 shows: 1 and 3 - for a homogeneous pipe (excluding dispersion), 2,4,5 – 
for two-layer homogeneous pipes. 

 
Fig. 2. Change of phase velocity depending on the wave number. 
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𝑐𝑐�,� � 2�̄�𝜇��𝑘𝑘/𝑟𝑟����1/𝑟𝑟��𝑊𝑊��𝛼𝛼�𝑟𝑟�� �𝑊𝑊�' �𝛼𝛼�𝑟𝑟���; 
𝑐𝑐�,� � �̄�𝜇�𝛾𝛾��𝑘𝑘/𝑟𝑟���𝑍𝑍���' �𝛽𝛽�𝑟𝑟�� � ��𝑘𝑘 � 1�/𝑟𝑟��𝑍𝑍����𝛽𝛽�𝑟𝑟���; 
𝑐𝑐�,� � �̄�𝜇�𝛾𝛾��𝑘𝑘/𝑟𝑟���𝑊𝑊���' �𝛽𝛽�𝑟𝑟�� � ��𝑘𝑘 � 1�/𝑟𝑟��𝑊𝑊����𝛽𝛽�𝑟𝑟���; 
𝑐𝑐�,� � �̄�𝜇��𝛽𝛽��𝑍𝑍��𝛽𝛽�𝑟𝑟�� � 𝑍𝑍�' �𝛽𝛽�𝑟𝑟���; 
𝑐𝑐�,� � �̄�𝜇��𝛽𝛽��𝑊𝑊��𝛽𝛽�𝑟𝑟�� �𝑊𝑊�' �𝛽𝛽�𝑟𝑟���; 
𝑐𝑐�,� � �2�̄�𝜇��𝑘𝑘/𝑟𝑟����1/𝑟𝑟��𝑍𝑍��𝛼𝛼�𝑟𝑟�� � 𝑍𝑍�' �𝛼𝛼�𝑟𝑟���; 
𝑐𝑐�,� � �2�̄�𝜇��𝑘𝑘/𝑟𝑟����1/𝑟𝑟��𝑊𝑊��𝛼𝛼�𝑟𝑟�� �𝑊𝑊�' �𝛼𝛼�𝑟𝑟���; 
𝑐𝑐�,� � ��̄�𝜇�𝛾𝛾��𝑍𝑍���' �𝛽𝛽�𝑟𝑟�� � ��𝑘𝑘 � 1�/𝑟𝑟��𝑍𝑍����𝛽𝛽�𝑟𝑟���; 
𝑐𝑐�,�� � �̄�𝜇�𝛾𝛾��𝑊𝑊���' �𝛽𝛽�𝑟𝑟�� � ��𝑘𝑘 � 1�/𝑟𝑟��𝑊𝑊����𝛽𝛽�𝑟𝑟���; 
𝑐𝑐�,�� � �̄�𝜇��𝛽𝛽��𝑍𝑍��𝛽𝛽�𝑟𝑟�� � 𝑍𝑍�' �𝛽𝛽�𝑟𝑟���; 
𝑐𝑐�,�� � �̄�𝜇��𝛽𝛽��𝑊𝑊��𝛽𝛽����� �𝑊𝑊�' �𝛽𝛽������; 

                                   𝑐𝑐�,� � �2�̄�𝜇�𝛾𝛾��𝑍𝑍�' �𝛼𝛼�𝑟𝑟���; 
𝑐𝑐�,� � �2�̄�𝜇�𝛾𝛾��𝑊𝑊�' �𝛼𝛼�𝑟𝑟��; 
𝑐𝑐�,� � ��̄�𝜇���𝑘𝑘/𝑟𝑟��𝑍𝑍���' �𝛽𝛽�𝑟𝑟�� � ���𝑘𝑘� � 𝑘𝑘 � 1/𝑟𝑟���� � 𝛽𝛽�� � 𝛾𝛾���𝑍𝑍���' �𝛽𝛽�𝑟𝑟���; 
𝑐𝑐�,� � ��̄�𝜇���𝑘𝑘/𝑟𝑟��𝑊𝑊���' �𝛽𝛽�𝑟𝑟�� � ���𝑘𝑘� � 𝑘𝑘 � 1/𝑟𝑟���� � 𝛽𝛽�� � 𝛾𝛾���𝑊𝑊���' �𝛽𝛽�𝑟𝑟���; 

    𝑐𝑐�,� � ��̄�𝜇��𝑘𝑘𝛾𝛾�/𝑟𝑟��𝑍𝑍��𝛽𝛽�𝑟𝑟��; 𝑐𝑐�,� � ��̄�𝜇��𝑘𝑘𝛾𝛾�/𝑟𝑟��𝑊𝑊��𝛽𝛽�𝑟𝑟��; 
𝑐𝑐�,� � 2�̄�𝜇�𝛾𝛾��𝑘𝑘𝛾𝛾�/𝑟𝑟��𝑍𝑍�' �𝛼𝛼�𝑟𝑟��; 𝑐𝑐�,� � 2�̄�𝜇�𝛾𝛾��𝑘𝑘𝛾𝛾/𝑟𝑟��𝑊𝑊�' �𝛼𝛼�𝑟𝑟��; 
𝑐𝑐�,� � �̄�𝜇���𝑘𝑘/𝑟𝑟��𝑍𝑍���' �𝛽𝛽�𝑟𝑟�� � ���𝑘𝑘� � 𝑘𝑘 � 1/𝑟𝑟���� � 𝛽𝛽�� � 𝛾𝛾���𝑍𝑍����𝛽𝛽�𝑟𝑟���; 
𝑐𝑐�,�� � �̄�𝜇���𝑘𝑘/𝑟𝑟��𝑊𝑊���' �𝛽𝛽�𝑟𝑟�� � ���𝑘𝑘� � 𝑘𝑘 � 1/𝑟𝑟���� � 𝛽𝛽�� � 𝛾𝛾���𝑊𝑊����𝛽𝛽�𝑟𝑟���, 
𝑐𝑐�,�� � �̄�𝜇�𝛾𝛾��𝑘𝑘𝛾𝛾�/𝑟𝑟��𝑍𝑍��𝛽𝛽�𝑟𝑟��; 
𝑐𝑐�,�� � �̄�𝜇�𝛾𝛾��𝑘𝑘𝛾𝛾�/𝑟𝑟��𝑊𝑊��𝛽𝛽�𝑟𝑟��. 

The other elements of the main determinant are defined similarly. 

3 Results and analysis 
After simple transformations, we obtain a dispersion equation, which is solved numerically 
by the Muller method on complex arithmetic. 

To obtain numerical results for a two-layer viscoelastic pipe, the following parameter 
values are taken: 

Dт=50mm, Dи=5mm, the outer pipe is made of X12 steel:𝜇𝜇� � 80 ⋅ 10�𝑃𝑃𝑃𝑃,𝜌𝜌� �7800𝑘𝑘𝑘𝑘/𝑚𝑚�.   the inner pipe is made of 30L steel: 𝜇𝜇� � 70 ⋅ 10�𝑃𝑃𝑃𝑃,𝜌𝜌� � 7500𝑘𝑘𝑘𝑘/𝑚𝑚�. As an example of a viscoelastic material, we take the Koltunov - Rzhanitsyn relaxation 
core: 𝑅𝑅к�𝑡𝑡� � 𝐴𝐴к𝑒𝑒��к�/𝑡𝑡���к, with parameters:𝐴𝐴к � 0,048; 𝛽𝛽к � 0,05; 𝛼𝛼к � 0,1 
(k=1,2). Figure 2 shows: 1 and 3 - for a homogeneous pipe (excluding dispersion), 2,4,5 – 
for two-layer homogeneous pipes. 

 
Fig. 2. Change of phase velocity depending on the wave number. 

Figures 3 and 4 show the changing real part of the phase velocity (six modes) depending 
on the wave number at different ratios of radii (𝑅𝑅� � 𝑟𝑟�/𝑟𝑟�,𝑅𝑅� � 𝑟𝑟�/𝑟𝑟�,𝑅𝑅� � 1 ).  

 

 
Fig. 3. Change of phase velocity depending on the wave number. 

It can be seen that with an increase in the wave number, the real parts of the phase velocity 
are killed and approach the asymptotic. The nature of the change in the imaginary part of the 
phase velocity of all modes for viscoelastic cylindrical bodies is almost the same (Figure 3 
and Figure 4).  

 

 
Fig. 4. Change of the phase velocity depending on the wave number. 

4 Conclusions 
A structurally inhomogeneous mechanical system is investigated for various geometric and 
physico-mechanical parameters of the mechanical system. Based on the above study, it was 
found that the real parts of the wave velocity will increase by only a 5%, and the imaginary 
parts - have changed radically. So that, phase velocities with an increase in the number of 
waves along the circumference of the cylinder first decrease, and then begin to increase. 
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