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Abstract. Circular cylindrical shells, as structural elements, have found 
wide application in various fields of mechanical engineering. Thin-walled 
layered shells have also found wide application as components in 
underwater objects, air and space vehicles and in many other engineering 
structures. The aim of this work is to study the action of a non-axisymmetric 
moving wave of normal pressure on a cylindrical shell interacting with an 
ideal compressible fluid. The problem statement is given, solution methods 
are developed, and numerical results are obtained for new problems of 
stationary deformation of infinitely long viscoelastic cylindrical shells on a 
viscoelastic foundation when a non-axisymmetric normal pressure wave 
moves along the shell axis with up to resonant velocity. As an example,  
considered the action of a non-axisymmetric moving wave of normal 
pressure on a cylindrical shell interacting with an ideal compressible fluid. 
The solution methods are based on the joint application of the integral 
Fourier transform along the axial coordinate and the expansion of all given 
and desired values into Fourier series along the angular coordinate. An 
efficient algorithm for the joint calculation of integrals and Fourier series 
has been developed and implemented on a computer. It has been established 
that paying to attention the viscoelastic properties of the shell material 
reduces the deflections by 10–15%, and also makes it possible to evaluate 
the damping capabilities of the system. 

1 Introduction 
Circular cylindrical shells, as structural elements, have found wide application in various 

fields of mechanical engineering, and thin-walled layered shells have found wide application 
as components in underwater objects, air and space vehicles and in many other engineering 
structures. Of great practical interest is the study and elimination of resonant phenomena in 
shells with filler. A significant number of theoretical and experimental works have been 
devoted to the study of stationary deformation of cylindrical shells with a viscoelastic filler 
[1, 2]. However, there are still no reliable solution methods that allow determining the 
parameters of resonances in a wide range of changes in physico-mechanical and geometric 
parameters, paying to attention the rheological parameters of the system. There are also 
works in which dependences for determining the resonant frequencies [3] and the forms of 
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vibrations of the shell of cylindrical panels with filler [4, 5] are obtained by theoretical and 
experimental method. Another method based mainly on hypotheses is used to study the 
dynamics that allow us to move from the stability equations of shells to the corresponding 
equations for cylindrical shells with a circular cross section. 

In many works, the momentary and semi-momentary theory of shells is used [6, 7]. 
Approximate methods are also used to solve the problems of stationary deformation of 
cylindrical shells with a viscoelastic filler [8, 9, 10]. Of particular difficulty are the problems 
of vibrations of layered cylindrical shells in a geometrically nonlinear formulation, paying to 
attention  the rheological properties of the material, solutions for which are practically absent. 
Thin-walled layered shells are also widely used as components in underwater objects, air and 
space vehicles and in many other engineering structures [11, 12]. One of the most important 
tasks in the design of such structures designed to operate in the stationary deformation mode 
is the problem of effective damping of excited vibrations, non-axisymmetric problems of 
stationary deformation of cylindrical shells with viscoelastic filler interacting with a liquid, 
which have been studied by many authors, in particular in [13, 14, 15]. At the same time, 
axisymmetric and non-axisymmetric problems were considered, various models for the liquid 
and shell were used. The question of the effect of a moving pressure wave on a cylindrical 
shell filled or surrounded by a liquid has been less studied, and only axisymmetric loading 
has been considered [16,17]. 

In this paper, the problems of the action of a non-axisymmetric moving wave of normal 
pressure on a cylindrical shell interacting with an ideal compressible fluid are considered. 
The problem is solved using an integral transformation along the axial coordinate and Fourier 
series along the angle. The solution of the problem of motion along an infinitely long 
viscoelastic cylindrical shell interacting with an ideal compressible fluid of normal pressure, 
arbitrary in length and circumference, but unchanged in time profile is obtained. The speed 
of movement of the load is constant. It is considered in the case when it moves at a speed 
lower than the speed of sound in a liquid. The liquid fills the cavity between the viscoelastic 
radius shell and the rigid cylindrical radius wall coaxial with it ( )b b a . 

2 Methods 

2.1 Problem statement and solution methods 

An infinite length deformable (viscoelastic) cylindrical shell with a constant thickness 0 jh
, 

density 0 j
, Poisson's ratio 0 ( 1,2)j j = , filled into a liquid with a density in an 

equilibrium state is considered.   The vibrations of such a shell under load, the density of 

which we denote  1 2( , , )j j j njp p p p  accordingly, can be described, following [18], by the 
equations: 

 
( ) ( ) ( ) ( ) ( )2 2 2

0 0
0 2

0 0 0

1 1
, .

t
j j j

j Ej j j j
j j j

u
Lu LR t u r d p

E h E t
 

   
−

− −  
− − = +    


(1) 

Here ( ), ,j j rj j zju u u u u=  is the vector of displacements of the points of the median 
surface of the shell, and for Kirchhoff-Love shells it has a dimension equal to three 
( ); ;rj j j j zj ju u u v u w= = =

, and for Timoshenko-type shells the 
dimension of the vector is five. Here, in addition to axial, circumferential and normal 
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t
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j Ej j j j
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Here ( ), ,j j rj j zju u u u u=  is the vector of displacements of the points of the median 
surface of the shell, and for Kirchhoff-Love shells it has a dimension equal to three 
( ); ;rj j j j zj ju u u v u w= = =

, and for Timoshenko-type shells the 
dimension of the vector is five. Here, in addition to axial, circumferential and normal 

displacements, the angles of rotation of the normal to the median surface in the axial and 

circumferential directions are added [18];  , ,
T

j j ju v w - the displacement vector with axial, 
circumferential and radial components, respectively (the sign "+" before pn and the sign "–" 
before the last component of the inertial term indicates that the movement towards the center 

of curvature is considered positive); ( )EjR t − –relaxation core; 0 jE –instantaneous 
modulus of elasticity. The non-axisymmetric motion of the Timoshenko-type shell is 
described by equations (1), and in the components of the load vector, only the term [18] is 

different from zero: where 3
1 ( ),
2 r r

vp q p
Gh
−

= −
 the minus sign corresponds to the 

caseb a , and plus b a−  . 
The motion of an ideal incompressible fluid is described by the wave equation 

 

2 2 2 2

2 2 2 2 2 2
1

1 1 1 .
r r r r x c t
    


    

+ + + =
      (2) 

where   is the velocity potential;  1c  - acoustic velocity of sound in a liquid;   0p - 
density of the liquid. 

The problem is reduced to the joint integration of equations (1) and (2) when the boundary 
conditions of the impermeability of the shell and the rigid wall are met. 

 
; 0r a r b

d w d
dr t dr
 

= =


= =
  (3) 

In this case, the pressure entering (3) from the liquid side is expressed in terms of the 
velocity potential according to the formula 

 0r r aq p
t


=


= −
  (4) 

Considering the steady-state process, we proceed in the equations of motion of the shell 
and the fluid to the coordinate system moving with the load and apply the Fourier transform 
according to  [18]. In the image space  , the solution of the transformed equations is 
sought in the form of Fourier series along the angular coordinate  . 

 

   

   

0 0 0 0 0 0 0 0 0 0

0

0 0 0 0

1

, , , , , , , , ;

, , .

i t
x r r n n xn rn rn

n

i t
y n yn

n

u w p q u w p q e

v v e





 

 


−

=


−

=

=

=




 (5) 

Substituting (5) into the transformed equations of motion of the shell, we obtain a system 
of algebraic equations for the Fourier coefficients of transformant displacements of the 
median surface. In this system, the coefficients of decomposition of the fluid pressure are 
unknown, which must be expressed in terms of the coefficients of normal displacement of 
the shell. Representing the transformant of the velocity potential in the form (5) and 
substituting it into the transformed equation (2), we come to the equation 

 

2 0 0 2
2 2 0

2 2

1 1 0b n
n

n M
r r r r
   
   

    + − + − =       (6) 
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where 1/M c c=  is the Mach number. The solution of equation (6), in subsonic mode of 
motion 1c c , has the form 

 ( ) ( )0 2( ) ( ) ; 1n n n n nA K r B I r M      = + = − (7) 

Substituting (7) into (3), (4), we find the connection between the reaction of the liquid 
and the normal displacement of the shell: 

0
0 2 2
. 0 ( , , ) ,n

r n
wq p c k f n c
h

 =
 

where for 1c c  

 
( )4 2 3 5

1 4 2 3 5 6

( , , ) ;
( )( ) ( )( )

ns ns s s
f n c

n s ns ns s ns s
 


   

− − +
=

+ − − + − (8) 

1
1 2

1
3 4

1

1
5 6

1 1

( ) ( ); ;
( ) ( )
( ) ( ); ;
( ) ( )
( ) ( ); ; .
( ) ( )

n n

n n

n n

n n

n n

n n

I Is s
I I
I Is s
I I
K K bs s

K K a

 
 
 
 
  
 

+

+

+

+

+ +

= =

= =

= = =
 

If the shell is completely filled with liquid, then formula (8) takes the form 

 ( ) 1
1( , , ) .f n c n s  −= +  (9) 

Substituting the found connection (8) into the system of algebraic equations for 
determining the coefficients of expansion of the transformants of the shell displacements, we 
find 

 

   0 0 0 0 0 1 2 3 4 5
,2

0

, , , ,1, , , ,
2 det

( , 1,...,5).

n n xn xn yn z n
gn n kl

vu p
G k a

k l

        −
= −



= (10) 

The elements of the determinants detn kla  are calculated by the formulas 
2 2 20 0

11 0

0
12 21 45 54

13 31 0

1 11 ;
3 3

1 ;
2

;

v va c n

va a a a i n

a a i v







− − = − − − 
 

+
= − = = − =

= =  
2 2 20

22 0

2
10 0

23 25 32

2 2 2 2 20 0 0
33 0 0

1 2(1 ) ;
2 3

2 (1 ) ; ; ;
2

1 11 ( ) 1 ( , , ) ;
2 3

va c n

v ka n a k a n

v v pa k n c f n c
k



  

−



−
= − − −

+ +
= − = =

 − −
= + + − + 

   
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p G





− −
= − = −

= = − −

= − = − −

= = = = = = =

= =
 

The determinants ( 1,...,5)j j =  are obtained from replacing the detn kla j −

column with elements  0,0,1,0,0 . Substituting (10) into formula (7), we find the 
Fourier coefficients of the fluid pressure transformants 

2
0 2 00 0 3
, .

1 ( , , )
3 detr n r n

n kl

v p cq f n c p
k a

 
− 

= −
 . 

For the bending moment and the transverse force in the shell , we obtain 

 
0 0 4 5
, , ;

12 detx n r n
n kl

ha i nvM p
a

 
= −

5
0 00 4 5
, ,

(1 ) .
2 detx n r n

n kl

v k i nvQ ap
k a

−  
= −

(11) 

As an example, the motion in the case  a >b  of a system exponentially decreasing in 
length and concentrated along the circumference of self-balanced external loads of the same 
intensity is considered: 

2
1

( , ) exp( ) ( ) ( ).
l

r k
k

p p a H     
=

= − −
 

Here ( ), ( )H x x  are the Heaviside and Dirac functions. In this case
0 2
, ,n

r n
p ap

a i
=

−  where na  are the Fourier coefficients of the function 1
( )

l

k
k

 
=

−
 . If we 

take where 2 12 / ,p p l=  1p  is the intensity of the corresponding loads, then the 
mixing and the corresponding load take the following form 

 
( ) ( )1 3

1 2 2
01 0

cos( ) sin( )1 cos ;g
n

n

G avw a n
p a kl a

   







=

   −−  = −  
+  

 
(12) 

 
( ) ( )

22
30 0

1 2 2
01 0

( , , ) cos( ) sin( )2(1 ) cos .
3 det

r
n

n n kl

f n c aq v p cq w a n
p kl a a

    




 
 

=

  −−  = = = −  
+  

 
 

where ( ) ( )1 1 11 ,С S
g g R g RГ i • = −  −  , ( )С

к R  , ( )S
к R  ,

( )С
к R  , ( )S

к R  - accordingly, the cosine and sine of the Fourier image of 
relaxation kernels, which are defined as follows  

( ) ( ) ( ) ( )1 1
0 0

cos , sin .c s
g R E R g R G RR d R d         

 

 =  = 
 

Similarly, using (12), it is possible to write formulas for , .x xM Q  for the system paying 
to attention  the damping of vibrations of the mechanical system at different numbers of 
waves in the circumferential direction. 
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3 Results and analysis 

As the relaxation core of the viscoelastic shell material ( ) 



−

−

= 1t
AetR

t , we take the three-

parameter Rzhanitsyn-Koltunov core [19], which has a weak singularity, where are the 
parameters  ,,A  of the materials [20]. Let's take the following parameters: 

1,0;05,0;048,0 === A . The roots of the dispersion equation are determined 
by the Muller method ( ), at each iteration of the Muller method, the Gauss method is applied 
with the allocation of the main element.  

The calculations used the representation of the delta function by a finite Fourier series 
with improved convergence 

1

1

1 1( ) sin( )cos( ) .
2

N

n

N n n
n N

  
 

−

=

 = +  


 
Calculations were carried out for a steel shell interacting with a layer of water. At the 

same time , the following parameter values were taken: 
2
0 0

0 0 0

0.65, 0.0035, 0.45, 0.25,

1.0, 0.13, 0.1, 1.7.

k k

a c M




= = = =

= = = =

 

Figure 1 shows the distribution of dimensionless deflections of a shell with a compressible 
liquid along a circle 0.3 = − in cross section for two (line1), four (line 2), three (line 3) 
and twenty uniformly concentrated loads (in the second octant), which are described by the 
formula (12). Calculations have shown that the series in formulas of the form (12) for both 
displacements and forces in the shell converge quickly enough and to achieve the necessary 
accuracy, it is enough to take n=2. 

 
Fig. 1. Distribution of deflections of the shell with liquid at different numbers of concentrated forces. 

Since the total pressure on the shell remains constant for any number of loads, with an 
increase in the number of forces, the maximum deflections decrease rapidly (the effect of 
discrete application of the load is mitigated) and the nature of the deflection distribution 
approaches the corresponding axisymmetric one. It is established that paying to attention  the 
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with the allocation of the main element.  

The calculations used the representation of the delta function by a finite Fourier series 
with improved convergence 
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Calculations were carried out for a steel shell interacting with a layer of water. At the 

same time , the following parameter values were taken: 
2
0 0

0 0 0

0.65, 0.0035, 0.45, 0.25,

1.0, 0.13, 0.1, 1.7.
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Figure 1 shows the distribution of dimensionless deflections of a shell with a compressible 
liquid along a circle 0.3 = − in cross section for two (line1), four (line 2), three (line 3) 
and twenty uniformly concentrated loads (in the second octant), which are described by the 
formula (12). Calculations have shown that the series in formulas of the form (12) for both 
displacements and forces in the shell converge quickly enough and to achieve the necessary 
accuracy, it is enough to take n=2. 

 
Fig. 1. Distribution of deflections of the shell with liquid at different numbers of concentrated forces. 

Since the total pressure on the shell remains constant for any number of loads, with an 
increase in the number of forces, the maximum deflections decrease rapidly (the effect of 
discrete application of the load is mitigated) and the nature of the deflection distribution 
approaches the corresponding axisymmetric one. It is established that paying to attention  the 

viscoelastic properties of the shell material deflections by 10-15%, and also allows us to 
evaluate the damping abilities of the system. 

4 Conclusions 
Thus, the paper presents a mathematical formulation and methods for solving the problem of 
motion along an infinitely long viscoelastic cylindrical shell interacting with an ideal 
compressible fluid of normal pressure, arbitrary in length and circumference, but unchanged 
in time, wave propagation profile in flat and extended mechanical systems. The equations of 
motion of piecewise homogeneous mechanical systems are described by linear equations of 
shell theory. It is established that paying to attention the viscoelastic properties of the shell 
material reduces deflections by 10-15%, and also allows us to evaluate the damping 
capabilities of the system. 
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