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Abstract. The purpose of this article is to analyze various methods for 
measuring central tendency in statistics, including arithmetic mean, median, 
winsorized mean, outlier exclusion method, Hodges-Lehmann estimator, 
and quantile estimation and much more. The advantages and disadvantages 
of each of these methods are discussed, as well as their practical applications 
in performance analysis in distributed systems. In particular, we focus on the 
importance of selecting an appropriate measure of central tendency that is 
robust to outliers and accurately reflects the distribution of the data. We also 
provide examples of how these methods can be applied to real-world 
datasets to gain insights into the underlying patterns and trends. Overall, this 
article provides a comprehensive overview of the different techniques for 
measuring central tendency and offers practical guidance for researchers and 
analysts looking to make informed decisions about perfomance analysis. 

1 Introduction 
Distributed systems have become increasingly important in modern computing due to 

their ability to provide high levels of scalability, fault-tolerance, and performance [20]. 
However, evaluating the performance of distributed systems is a complex task, as it involves 
measuring not only the individual components but also the interactions and dependencies 
between them. The ability to accurately evaluate the performance of distributed systems is 
crucial for ensuring that they meet their design goals and for identifying and addressing 
potential issues. 

In the course of our investigation into various forms of performance testing, such as 
benchmarking, stress testing, and load testing, we delve into the application of monitoring 
tools and techniques for the real-time evaluation of distributed systems. It is evident that the 
methods of mathematical statistics serve as a means of descriptive analysis in this field of 
research. 

For example, we posit an examination of the distribution of request per-second (RPS), 
assuming that it is characterized by normal distribution[1] – Fig.1., also known as the 
Gaussian distribution (1). 
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Fig. 1. Normal distribution. 

RPS is a performance metric used to measure the throughput of a system. RPS represents 
the number of requests that a system can process in a second, and it is often used as a key 
performance indicator for web servers, APIs, and other distributed systems that handle a high 
volume of requests. Measuring RPS [8] is important for ensuring that a distributed system 
can handle a large number of concurrent requests without experiencing performance issues 
or downtime. The problem is that at hand pertains that RPS encompasses various factors, 
such as the duration of data retrieval from the hard disk in the event of an input/output (I/O) 
bottleneck, the responsiveness of the random-access memory (RAM), the degree of request 
queue activity, among other elements. In essence, this parameter is intricate in nature and 
comprises a multitude of variables. 

The normal distribution can be characterized by a set of two parameters - the expected 
value -  and the standard deviation -  . However, it should be noted that not all arbitrary 
probability distributions can be fully specified by two parameters, because they do not display 
the distribution form. This issue is addressed in a scholarly article [2] that explores different 
forms(Fig. 2.) of the normal distribution. 
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Fig. 2. Forms of normal distribution with correlation coefficients. 

As a means of approbation, let us consider an API function that facilitates file creation 
within a distributed web application. By leveraging the widely adopted Java Spring 
framework, we implemented this function and with Docker Compose technology locally 
deployed several instances of this service in kernel mode. Following this, a load testing 
experiment was conducted with randomized routing and asynchronous request processing. 
The utilized instrumentation included the Apache JMeter application, as well as the testing 
platform comprising an Intel Core i9-10900KF central processing unit, 32 gigabytes of 
random-access memory, and a solid-state drive with a data transfer rate of 5500 megabytes 
per second. It is worth noting that the flow and intensity of the request remained consistent 
at 1 RPS throughout the entire experiment with 1000 iterations.  The raw data underwent 
computational procedures with the assistance of the Python programming language and the 
NumPy library of mathematical functions. A histogram, depicted in Figure 3, was generated 
from the processed data. 

Table 1.

Iteration’s count Time interval, milliseconds 

976 [37, 60) 

19 (60, 110) 

5 (110, 500+) 
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Fig. 3. A graph of the density of distributions during testing of the normal distribution. 

In the plot depicted in Figure 3, it is observable that the principal modes remain confined 
to the range of 0 to 100 milliseconds, whereas minor outlines manifest subsequent to the 100-
millisecond mark. Therefore, it can be hypothesized that the quantity of spikes and the 
heterogeneity of distributions will increase during the analysis of real production systems. 
Albeit lacking full clarity, this observation substantiates the conjecture that in practical 
settings wherein intricate functions governing system interactions, input/output operations, 
and intricate computations are involved and etc., the assurance of a normal distribution's 
manifestation is unstable. 

In summary, the major issues associated with analyzing performance [9] are as follows: 
- Large variability in values - measurements are not localized in a single vicinity and may 
have a wide discrete range along the numerical axis; 
- Heavy-tailed and extreme outlines; 
- Multimodality; 
- Discretization effects, wherein continuous distributions acquire a discrete nature; 
- Asymmetry. 

Henceforth, within the confines of this manuscript, we shall expound upon alternative 
techniques for appraising performance distributions that influence non-standard sectors of 
mathematical statistics, namely, central tendency, quantile approximations. 

2 Central tendency 
Central tendency [10] allows for the compression of intricate performance distributions into 
a single numerical value. One of the most trivial ways to implement this approach is the 
arithmetic mean. 

2.1 Arithmetic mean 

Let us consider a sample of n numerical values (2), in such an instance the arithmetic 
mean[11] can be computed utilizing (3). 

{ , , ..., }1 2x x x xn=       (2) 

4

E3S Web of Conferences 419, 01029 (2023) https://doi.org/10.1051/e3sconf/202341901029
WFCES 2023



Fig. 3. A graph of the density of distributions during testing of the normal distribution. 

In the plot depicted in Figure 3, it is observable that the principal modes remain confined 
to the range of 0 to 100 milliseconds, whereas minor outlines manifest subsequent to the 100-
millisecond mark. Therefore, it can be hypothesized that the quantity of spikes and the 
heterogeneity of distributions will increase during the analysis of real production systems. 
Albeit lacking full clarity, this observation substantiates the conjecture that in practical 
settings wherein intricate functions governing system interactions, input/output operations, 
and intricate computations are involved and etc., the assurance of a normal distribution's 
manifestation is unstable. 

In summary, the major issues associated with analyzing performance [9] are as follows: 
- Large variability in values - measurements are not localized in a single vicinity and may 
have a wide discrete range along the numerical axis; 
- Heavy-tailed and extreme outlines; 
- Multimodality; 
- Discretization effects, wherein continuous distributions acquire a discrete nature; 
- Asymmetry. 

Henceforth, within the confines of this manuscript, we shall expound upon alternative 
techniques for appraising performance distributions that influence non-standard sectors of 
mathematical statistics, namely, central tendency, quantile approximations. 

2 Central tendency 
Central tendency [10] allows for the compression of intricate performance distributions into 
a single numerical value. One of the most trivial ways to implement this approach is the 
arithmetic mean. 

2.1 Arithmetic mean 

Let us consider a sample of n numerical values (2), in such an instance the arithmetic 
mean[11] can be computed utilizing (3). 

{ , , ..., }1 2x x x xn=       (2) 

...1 2x x xnx
n

+ +
=       (3) 

However, if an outline include in our sample n, as in the case of (4), then the arithmetic 
mean loses its credibility as an indicator of central tendency. 

{1, 2, 3, 4, 5, 6, 273}; 48x x= =      (4) 

In general, the arithmetic mean is characterized by low robustness [12], indicating its 
vulnerability to the influence of extreme values, or outliers. The presence of a single 
extremely large value can significantly impact the accuracy of the result, hence prompting 
the consideration of an alternative measure, such as the median.  
While the median for samples (5) and (6) may yield identical values, the application of the 
Gaussian efficiency estimate (7) could reveal discrepancies in the respective measures. 

{1, 2, 3, 4, 5, 6, 7}; 4x x= =      (5) 

{1, 2, 3, 4, 5, 6, 273}; 4x x= =      (6) 

( )
( )

( )

V mean
GaussianEfficiency T

V T
=     (7) 

The Gaussian efficiency can be defined as the ratio of the variance pertaining to the 
arithmetic mean estimate and the variance associated with the value of the estimate. After 
generating a set of samples from a normal distribution, we computed the metrics of the 
arithmetic mean and median values. The resulting density distribution indicators were 
displayed in Figure 4. Based on the obtained results, we constructed Table 2 for the Gaussian 
efficiency of the arithmetic mean and median. 

 
Fig. 4. A graph of the density of distributions during testing of the normal distribution. 

  

5

E3S Web of Conferences 419, 01029 (2023) https://doi.org/10.1051/e3sconf/202341901029
WFCES 2023



Table 2. Evaluation of Gaussian efficiency. 

 Arithmetic mean Median 

Gaussian efficiency 
100% 64% 

Based on the outcomes presented in Table 2, it can be contended that substituting the 
arithmetic mean with the median would lead to considerable dissimilarities among the 
experimental results.  

2.2 Trimmed and winsorized mean 

Let us contemplate a sample of eight sorted values, denoted as (8).  

{ , , , , , , , ,};1 2 3 4 5 6 7 8 1x x x x x x x x x x xi i=  +     (8) 

In order to determine the median, it is necessary to disregard elements other than 1 and 2, 
which occupy the central positions. While such an approach would enhance robustness, it 
would result in a reduction of Gaussian efficiency in this scenario. In this instance, we 
eliminate the highest and lowest values and subsequently compute the trimmed arithmetic 
mean (9) – (10) [13]. 

{ , , , }53 4 6x x x x xtrimmed =       (9) 

53 4 6
4

x x x x
xtrimmed

+ + +
=       (10) 

Compared to the conventional arithmetic mean, the trimmed arithmetic mean offers 
greater robustness and Gaussian efficiency. An alternative methodology entails utilizing the 
winsorized mean [14], where in the minimum and maximum values are substituted (11) – 
(12). 

{ , , , , , , , }3 3 3 4 5 6 6 6x x x x x x x x xwinsorized =     (11) 

53 3 3 4 6 6 6
8

winsorized

x x x x x x x x
x

+ + + + + + +
=     (12) 

Although both of these methods provide a foreseeable robustness measure, they are not 
invariably optimal since if a predetermined number of elements are trimmed or winsorized, 
this quantity may be either excessively small or overly large. 

2.3 Exclusion of outliers 

As an alternative scheme for evaluating central tendency, it may be advantageous to 
contemplate the prospect of excluding outliers. One of the most frequently employed 
methods is Tukey's criteria (13) [15]. 

[ , ]0.25 0.75Q k IQR Q k IQR−  +       (13) 
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[ , ]0.25 0.75Q k IQR Q k IQR−  +       (13) 

This technique approximates a particular interval using quantiles and discards outliers 
that fall outside of said interval. Whilst this technique may be useful for academic evaluations 
of data, in practice, it is possible to mistakenly exclude regular elements that have been 
mislabeled as outliers, thus leading to a reduction in Gaussian efficiency. If we relax the 
criteria for the interval, we may begin to overlook significant outliers, which could have a 
detrimental impact on the robustness of the data analysis. There exist numerous methods for 
excluding outliers, which are discussed in detail in [3]. These techniques offer different levels 
of efficiency in addressing the problem. 

However, defining outliers poses several challenges: 
- Outlier detection methods frequently lack stability; 
- Assessing the true performance of such methods and constructing a reliable analysis 
model can be challenging; 
- Outliers are an essential component of the distribution that contains valuable 
information for analysis. 

Suppose that our distribution can be characterized as a Pareto distribution – Figure 5. 

 
Fig. 5. Pareto distribution. 

For this type of distribution, characterized as Paretto, the arithmetic mean will be equal 
to (14), which does not provide any useful information about the central tendency of this 
distribution. Therefore, it can be assumed that approaches based on evaluating the mean or 
median will not yield meaningful insights. 
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2.4 Hodges-Lehmann evaluation 

The formula for calculating the Hodges-Lehmann estimator is given by equation (15). 

( )
2

x xi j
HL median

i j

+
=


      (15) 

The method can be described as evaluating all pairs of numbers, calculating the arithmetic 
mean for each pair, and then selecting the median from the resulting arithmetic means [4]. 
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The Hodges-Lehmann method is noted for its asymptotic Gaussian efficiency of 96%, 
which is practically equivalent to that of the arithmetic mean, as shown in Table 2. To 
evaluate the robustness, the breakdown point [18] method can be utilized, which 
characterizes the percentage of the sample that can be replaced with extremely large values 
without affecting the estimate itself. Robustness estimates according to the breakdown point 
for all the aforementioned methods are presented in Table 3. 

Table 3. Robustness for methods of estimating the central tendency according to the breakdown 
point. 

 
Arithmetic mean Median 

Hodges-Lehmann evaluation 

Breakdown point 
0% 50% 29% 

The arithmetic mean has a breakdown point of 0% because a single value can significantly 
distort the entire estimate. For the median, the breakdown point is 50%, since it is possible 
to arbitrarily modify half of the values in the sample without affecting the estimate. For the 
Hodges-Lehmann method, the breakdown point value is 29%, which is considered a 
reasonably good indicator of robustness. If 29% of the sample is composed of outliers, then 
they cannot be considered as outliers, but rather as a distinct group that requires separate 
analysis and description. In summary, it can be concluded that the Hodges-Lehmann method 
is a suitable replacement for both the arithmetic mean and median in assessing the central 
tendency for normal distributions and distributions of arbitrary shape. 

Moreover, in order to evaluate the central tendency, the following measures can be used: 
-  Modes [19]; 
-  Geometric mean (16); 
-  Harmonic mean (17); 
-  Midhinge (18) [16]; 
- Trimean (19); 
-  And a lot of different metrics. 

...1 2
n x x xn        (16) 

1 1 1...1 2

n

x x xn
− − −+ + +

     (17) 

( ( ) ( ))0.25 0.75
2

Q x Q x+
     (18) 

( ( ) 2 ( ) ( ))0.25 0.50 0.75
4

Q x Q x Q x+ +
    (19) 

Relevant use cases exist for each of the metrics presented. It is imperative to note that in 
order to select a method for assessing the central tendency, it is of utmost importance to 
conduct an analysis of the statistical properties of the sample at hand. By taking into account 
all explicit and implicit business requirements, an informed decision can be made regarding 
the optimal method to be employed. 
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3 Quantile estimates 
Previously, we have examined an illustration of quantile estimation, specifically the median. 
This metric serves to bisect the probability density function of the distribution under 
investigation. In the event that a value is randomly sampled from the aforementioned 
distribution, it can be asserted that there is an inherent 50% likelihood of the selected value 
being situated within either of the two identified partitions.The subsequent prominent 
measures in the quantile estimation of distributions are quartiles - a set of three values that 
demarcate the distribution into four partitions. In addition, deciles serve as another set of 
quantile measures that partition the distribution into ten equivalent portions. And percentiles 
- which divide the distribution into one hundred equal parts [17] – Figure 6. 

 
Fig. 6. Percentiles. 

Quantiles serve as a broad generalization of all the previously presented definitions. A 
quantile of order p  is a value that satisfies the property whereby a randomly sampled value 
from a particular distribution possesses a probability of p  of being less than the value of the 
p -quantile, and a probability of 1 p−  of exceeding it.It is worth noting that a distinction 

should be made between the actual quantiles of a distribution and the quantile estimations 
derived from a sample thereof. 

Let us contemplate a sample extracted from a normal distribution (20), and subsequently 
compute the quartiles via a standardized approach – Table 4. 

{ 1.37, 0.19, 0.14, 0.16, 0.26, 0.39, 0.46, 0.74, 0.89};x = − −    (20) 

In addition to the conventional three quartiles, which coincide with the 25th, 50th, and 
75th percentiles, the sample's minimum and maximum values can be included by appending 
the 0th and 100th percentiles, respectively. Formally, such notation would not be admissible, 
though it is frequently adopted nonetheless.Let us compare the computed values of these 
quantities with the actual quartiles of the underlying distribution, and take note of any 
discrepancies. It should be emphasized that the quartiles of a given distribution are fixed 
values and represent a characteristic feature thereof, while the quantiles derived from a 
sample are inherently variable across different experiments. It is important to recognize that 
the complete designation of these values is not merely quantiles, but rather, quantile 
estimates. 
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Fig. 7. Distribution of quantile numbers. 

Table 4. Quantiles of distributions and quantiles of samples. 

 Sample Distribution 

0.00Q  1.37−  −  

0.25Q  0.14  0.67−  

0.50Q  0.26  0.00  

0.75Q  0.46  0.67  

1.00Q  0.89  +  

While quantile estimates are a means of approximating the genuine quantiles of a 
distribution based on the available sample data, they are intrinsically limited in terms of 
precision due to the fact that the final sample size is generally insufficient to yield a truly 
accurate determination of the true values. Simultaneously, it is feasible to devise a significant 
number of diverse approaches to hypothesize the genuine value for this given sample. 
Broadly speaking, any function that maps a sample to a numerical value can be deemed as a 
quantile estimate. Furthermore, these functions are not fixed and may differ across various 
packages for statistical analysis. A comprehensive list of such functions for mapping sample 
values to a numerical estimate is presented in reference [5].  
All formulas presented in this paper are derived from either a single ordinal statistic or a 
linear combination of two consecutive ordinal statistics. Here, the i  ordinal statistic denotes 
the i element of the sample after sorting. The principal benefit of the formulas presented is 
their straightforwardness and efficiency, In the average case, the computation of a quantile 
estimate using the presented formulas has a time complexity of (1)O  when sample was sorted. 
In most contemporary statistical data analysis software, the formula that is prevalently 
employed is the formula numbered 7 – Figure 8. 
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Fig. 8. Quantile estimators. 

3.1 Quantile estimate of Harrell-Davis 

An alternative method for estimating quantiles is the Harrell-Davis method, which was 
introduced in [6]. The mathematical expression for this estimate is given by equation (21). 

( ) ( )1

n
Q p W xiHD ii

= 
=

      (21) 

This estimate is computed as a weighted sum of all ordinal statistics. The weighting 
coefficients are determined based on the regularized incomplete beta function (22) – (23), 
which is a mathematical function that arises in the context of beta distributions and has 
applications in various areas of statistics and probability theory. 

( , ) ( , )( 1)W I a b I a bi i i
n n

= − −      (22) 

( 1), (1 )( 1)a p n b p n= + = − +      (23) 

The primary concept underlying this estimation technique is to construct a beta 
distribution based on the quantile order p  and the sample size n , and then divide this 
distribution into i  segments of equal width. Here, the probability of obtaining a segment 
equals the probability that the p -quantile coincides with the i  statistic. Consequently, the 
probability W  is determined for each ordinal statistic, indicating the likelihood of this 
statistic being the desired quantile. 
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Fig. 9. Quantile estimate of Harrell-Davis. 

Ultimately, a mathematical expectation is constructed for all ordinal statistics, thereby 
providing the ultimate estimation of quantiles. Frequently, these methodologies demonstrate 
efficacy in estimating the median; however, they may not always be effective in the extreme 
ends of distributions. 

3.2 Moments of quantile estimates 

Formula (24) can be utilized to calculate confidence intervals for quantile estimations. 
Furthermore, this formula is commonly referred to as the Maritz-Jarrett method . 

( )1

n kС W xik ii
= 
=

      (23) 

Upon comparison with the Harrell-Davis estimate, it can be inferred that the latter is an 
estimation of the first moment (24). The Maritz-Jarrett method, in its turn, has demonstrated 
that the standard quantile error can be derived from the square root of the discrepancy 
between the second moment and the square of the first moment, with confidence intervals 
being computed based on the standard error (25). 

( ) 1HDQ p C=      (24) 

2( ) 2 1S p C CMJ = −      (25) 

Nonetheless, it is pertinent to note that the selection of an appropriate quantile estimation 
necessitates a thorough analysis of the efficacy and robustness of various estimation 
techniques, as well as their suitability for specific data properties such as the median, tail 
elements, or exponential smoothing. Unfortunately, this aspect has not been delved into in 
this paper. However, if a suitable mathematical model is chosen based on the business 
requirements, it may be possible to investigate sliding quantile estimates in the future. 

4 Conclusion 
This paper focuses on a subset of statistical analyses related to performance distribution data, 
specifically in the evaluation of effectiveness and compliance with technical requirements 
for distributed systems in the context of processing external requests. The paper addressed 
various statistical methodologies such as central trend assessment, definitions of robustness, 
Gaussian efficiency, computation of censored averages, outlier exclusion, Hodges-Lehmann 
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