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Abstract. Using vector autoregressions is a promising direction in short-
term economic forecasting. They do not simply model the relationship 
between different factors, but also model the time-distributed relationship of 
these factors. Vector autoregressions are suitable for modeling complex 
dynamic economic multifactor processes. The complexity of the problem of 
estimating coefficients, which increases with the dimensionality of vectors, 
prevents the widespread use of autoregressions in practice. Vector 
autoregressions in complex-valued form with the same dimensionality as the 
modeled vector contain a much smaller number of coefficients. This 
facilitates the estimation of the coefficients of vector autoregressions. Some 
problems requiring further investigation arise when using vector 
autoregressions in complex form. Among them is the problem of selecting 
the best model. The information criteria used for this purpose limit the 
variety of vector autoregressions, reducing them to elementary models. The 
study was supported by the Russian Science Foundation grant No. 23-28-
01213, https://rscf.ru/project/23-28-01213. 

1 Introduction 
A scientific paper [1] gave the first insight into vector autoregressive (VAR) models as 

early as 1980, but vector autoregressive models only became the subject of intense scientific 
attention in the early 21st century. Almost every scientist could build these models because 
of the expansion of the computational capabilities of personal computers. Today, VAR theory 
is a complete doctrine describing the application of VARs and explaining their most 
important properties [2, 3, 4].  

The practical application of vector autoregressions is still at a very low level. If at the end 
of January 2023, the GOOGLE search engine returned 222,000 results for articles containing 
the term "vector autoregressions", only 2,000 of them contained results of applying vector 
autoregressions in practice. If one examines these 2,000 cases of the practical application of 
VAR closely, one can see that most of these vector autoregressions were two-dimensional. 
Three- or four-dimensional autoregressions are much rarer, and autoregressions of vectors 
greater than ten dimensions are the rarest cases in modeling and forecasting practice [5,6]. 
What causes such a discrepancy between the almost perfect theory and the vanishingly small 
practice of application of this theory? 

Let us give our answer to this question. Let us present the vector autoregression model: 
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0 1 1 2 2
ˆ ...t t t p pY A AY A Y A Y− −= + + + +     (1) 

Here Yt – is k-dimensional vector of variables; 
A0 – k-dimensional vector of free coefficients; 
Aτ – k х k -dimensional constant real matrix of coefficients. 
The vector autoregression model is commonly referred to as VAR(p), where p is the order 

of autoregression. 
From (1) it is easy to see that the number of vector autoregressive coefficients will be 

equal to (k2∙(p+1)). The original series of variables are usually centered on its arithmetic 
mean, thus eliminating the k-dimensional vector of free coefficients A0. The dimensionality 
of the problem is reduced and we only have to estimate k2∙p unknown coefficients. So what 
is this number?  

Suppose a forecaster is going to use VAR(p) for the 10-dimensional (k=10) vector of some 
interrelated economic indicators and assuming the forecast process has three lags (p=3). Then 
he has to solve the problem of estimating from the statistics (102∙3) = 300 unknown 
coefficients. If he wants to increase the dimensionality of the vector by at least one and 
increase the number of modelled indicators to k=11, he will have to estimate (112∙3) = 363 
unknown coefficients. 

The non-linear growth in the number of estimated VAR(p) coefficients with increasing 
vector dimensionality k limits the practical application of vector autoregressions because of 
the increasing computational complexity of the problem. Not every researcher has the skills 
to solve problems of this dimension, so vector autoregressive models do not find the wide 
practical application they deserve. This explains the fact that high-dimensional 
autoregressions apply to solving natural science or engineering problems. Only specialists 
strong in mathematics and mathematical statistics can estimate such many coefficients. A 
review of scientific publications on the application of vector autoregressions shows their 
infrequent application in economics. 

The order k of a vector autoregression is an important characteristic of a vector 
autoregression, so when denoting a vector autoregression we will show its dimensionality. 
We denote by VARk(p) the autoregression of a k-dimensional vector of order p. 

2 Research methodology 
Physics and engineering extensively use the theory of functions of a complex variable. This 
tool allows us to describe simple complex processes that are poorly formalizable in the real 
variable domain. The application of the tool in economics has opened a new direction of 
economic and mathematical modeling - "complex-valued economics". [7]. Many areas of 
economic and mathematical modeling, including the example of univariate autoregressions, 
have shown the success of the tools of this scientific section. A simple first-order complex-
valued autoregression has the following form [8]: 

1 2 0 1 1( 1) 2( 1)ˆ ˆ ( )( )t t t ty iy a ia y iy− −+ = + +    (2) 

Here y1t and y2t – modeled variables,  
a0 and a1 – actual autoregressive coefficients,  
i – is an imaginary unit, the square of which is i2=-1. 
Since the equality sign in (2) means that the real and imaginary parts of this equality are 

equal to each other, after opening the brackets in the right part, multiplying the numbers by 
each other, and grouping the real and imaginary parts, we can represent it in vector form: 
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1( 1)1 0 1

2( 1)2 1 0

ˆ
ˆ

tt

tt

yy a a
yy a a

−

−

−     
=     

        (3) 

A simple complex-valued autoregression is a kind of bivariate vector autoregression in 
which some coefficients are equal to each other. To be sure of this, we present below 
VAR2(1): 

1( 1)1 11 12

2( 1)2 21 22

ˆ
ˆ

tt

tt

yy a a
yy a a

−

−

    
=     
        (4) 

Comparing (3) and (4) with each other, we can see that (3) is a particular case of model 
(4). To construct model (3) it is necessary to estimate only two unknown coefficients, while 
to use model (4) it is necessary to estimate four coefficients, that is twice as many.  

Let us denote vector autoregression of complex variables as СVARk(p) to distinguish it 
from vector autoregression of real variables.  

For the case of a four-dimensional vector, write the СVAR4(1) model in the complex-
valued form: 

1 2 11 12 1( 1) 2( 1) 13 14 3( 1) 4( 1)

3 4 21 22 1( 1) 2( 1) 23 24 3( 1) 4( 1)

ˆ ˆ ( )( ) ( )( )
ˆ ˆ ( )( ) ( )( )

t t t t t t

t t t t t t

y iy a ia y iy a ia y iy
y iy a ia y iy a ia y iy

− − − −

− − − −

+ = + + + + +

+ = + + + + +
 

We can also represent it in matrix form: 

1( 1)1 11 12 13 14

2( 1)2 12 11 14 13

3( 1)3 21 22 23 24

22 21 24 234 4( 1)

ˆ
ˆ
ˆ
ˆ

tt

tt

tt

t t

yy a a a a
yy a a a a
yy a a a a

a a a ay y

−

−

−

−

 − −   
    
    =     − −
            (5) 

Its analogous model VAR4(1) would be:  

1( 1)1 11 12 13 14

2( 1)2 21 22 23 24

3( 1)3 31 32 33 34

41 42 43 444 4( 1)

ˆ
ˆ
ˆ
ˆ

tt

tt

tt

t t

yy a a a a
yy a a a a
yy a a a a

a a a ay y

−

−

−

−

    
    
    =     
            (6) 

Comparing these two models with each other, we can see that model (5) requires 
estimating fewer coefficients than model (6). If for the model in complex-valued form (5) it 
is necessary to estimate values of 8 unknown coefficients, then for vector autoregression of 
similar dimension (6) it is necessary to find 16 unknown coefficients.  

For any even number of the dimensionality of vector k the number of coefficients of 
model CVARk(p) will always be two times less than the number of coefficients of model 
VARk(p). And this is a significant reduction of the dimensionality of the problem to be solved. 
For example, for VAR10(1) model we need to estimate 100 unknown coefficients, and for 
CVAR1o(1) model we need 50 coefficients. 
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When a vector of odd dimension k is modeled, the situation is not better. The CVAR3(1) 
model for a three-dimensional vector of modeled variables in basic form would look like this: 

1 2 11 12 1( 1) 2( 1) 13 14 3( 1)

3 21 22 1( 1) 2( 1) 23 3( 1)

ˆ ˆ ( )( ) ( )
ˆ ( )( )

t t t t t

t t t t

y iy a ia y iy a ia y
y a ia y iy a y

− − −

− − −

+ = + + + +

= + + +
 

Or, representing it in matrix form: 

1( 1)1 11 12 13

2( 1)2 12 11 14

21 22 233 3( 1)

ˆ
ˆ
ˆ

tt

tt

t t

yy a a a
yy a a a

a a ay y

−

−

−

 −   
    =     

    −        (7) 

Here we have to estimate 7 unknown coefficients. The three-dimensional vector 
autoregression VAR3(1) will look like this: 

1( 1)1 11 12 13

2( 1)2 21 22 23

31 32 333 3( 1)

ˆ
ˆ
ˆ

tt

tt

t t

yy a a a
yy a a a

a a ay y

−

−

−

    
    =     

            (8) 

To use this model in practice it is necessary to find values of 9 unknown coefficients - 
two more coefficients than in the CVAR3(1) model. 

3 Research results 
The greater the number of coefficients a model contains, the more accurately it can describe 
the process being modeled. This rule is not always satisfied, but it is true. Therefore, perhaps 
in most cases in practice, the VARk(p) model will be more accurate than the analogous 
CVARk(p) model. There may be an impression that by clipping the problem into a complex 
form and making it easier to solve, we degrade the approximation and prediction properties 
of a vector autoregression. Complex-valued model in this case will always be inferior to 
VARk(p) models, and it will be of theoretical interest only.  

Let's check whether these fears have a right to exist. 
Hirotugu Akaike presented a paper "Information Theory and an Extension of the 

Maximum Likelihood Principle" at the Second International Symposium on Informatization 
in Budapest (1973) [9]. He proposed a universal method for choosing the best i-th 
autoregressive model with coefficients θ from a set of models i=1, 2, ..., k, ... L using the 
maximum likelihood principle. We reduced his proposal to the recommendation to choose a 
model by the criterion: 

1

ˆ2 log ( | ) 2
N

k L i k
i

f x k 
=

= − +
   (9) 

Here 
ˆ( | )i kf x   is the likelihood function of the initial variables x for a set of parameters 

ˆ
k ,  

k – «some … equivalents, is often called the order of the model» [9].  
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Here 
ˆ( | )i kf x   is the likelihood function of the initial variables x for a set of parameters 

ˆ
k ,  

k – «some … equivalents, is often called the order of the model» [9].  

The following year Akaike published an article "A New Look at Identification of a 
Statistical Model", where he called the criterion of choosing the best model AIC (Akaike's 
informational criterion) and presented the formula of this criterion in a convenient form for 
practical use in the problem of choosing the best autoregressive model ARIMA(p,d,q) [10, 
p. 720]: 

2log 2( )AIC N p q= + +    (10) 

Here N is the number of observations, σ2 is the variance of the model, p is the 
autoregressive order AR(p), and q is the model order MA(q). 

Akaike's idea - when choosing the best regression model to consider not only the accuracy 
of approximation but also the complexity of the model, other mathematicians have continued 
and proposed various modifications of the criterion for choosing the best AIC model. One 
popular version of this idea was the "Bayesian information criterion" - best model selection 
criterion proposed by Gideon Schwartz in 1978.  

Schwartz did not use the maximum likelihood function: "We therefore assume that 
observations come from a Koopman-Darmois family, i.e., relative to some fixed measure on 
the sample space they possess a density of the form 

( , ) exp( ( ) ( ))f x y x b  =  −    (11) 

where θ ranges over the natural parameter space Θ, a convex subset of the K-dimensional 
Euclidean space, and y is the sufficient K-dimensional statistic… 

Via Bayes' formula that is equivalent to choosing the j maximizes  

( , , ) log exp(( ( )) ) ( )j jS Y n j Y b n d    = −   (12) 

where the integral extend over mj ∩ Θ, and Y is the averaged y-statistic (1/n) ∑y(Xi)». 

[11, p.462]. 
Schwartz, solving this problem, got another criterion for choosing the best model, which 

he called «Bayesian information criterion» (BIC): 

2 lnln ( ) NBIC p q
N

= + +
    (13) 

The Schwartz BIC criterion is today the primary criterion when using autoregressions in 
economics and when solving the problem of choosing the best autoregressive model. 

Both the Akaike criterion (10) and the Schwartz criterion (13) represent a compromise 
between the accurate in the past and the least complex model.  

The more complex the model, the more accurately it describes the past, but the more 
coefficients it has. There is a danger that more complex models describe not only essential 
elements of past economic dynamics but also non-essential elements that acted in the past 
but will not act in the future. Making a model more complex slightly improves its accuracy, 
but significantly impairs its predictive properties. An insignificant decrease in the logarithm 
of variance is compensated by a more noticeable increase in the number of coefficients and 
leads to an increase in the BIC as a whole. Then BIC of this model in comparison with BIC 
of the previous simple model turns out to be bigger and the information criterion recommends 
choosing a simple model. 
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The procedure for selecting the best model using information criteria is formalized and 
reduced to selecting the model whose BIC criterion is minimal.  

Earlier we expressed a concern that the VARk(p) model would be more accurate than the 
analogous CVARk(p) model. And while the information criteria help to make the model 
choice, the smaller number of coefficients of the complex-valued model may compensate for 
the lower accuracy of the CVARk(p) model's approximation error compared to the VARk(p) 
model. 

Let us compare with each other the BIC for each of the vector autoregressive models - 
real variables and complex ones. Consider the case where the modeled vector comprises an 
even number of elements.  

Then for VARMAk(p,q) we get the following formula for calculating the information 
criterion: 

2 2 lnln ( )VAR
NBIC

N
k p q += +

   (14) 

and for СVARMAk(p,q) (at even k) – such: 

2
2 ( ) lnln

2CVAR
NBIC

N
k p q +

= +
   (15) 

Now we can get an answer to the question of how high should the variance of the complex 
autoregression be compared to the variance of the vector autoregression of the real variables 
to concede to it according to the BIC criterion?  

Let us first find the condition under which the two criteria are equal to each other. By 
equating the right-hand sides of (14) and (15), we get: 

22 ( )2 2
2

2 2

( )ln ln
2 V

k
CVAR CVAR N

VA R

q

R

p

A

k q N
N

p N 
 

++
= → =

  (16) 

Both models will be equal in terms of BIC criterion when the variance of the complex 

autoregression CVAR is exactly 

2 ( )
2

k p q
NN
+

 times larger than the variance of the vector 
autoregression VAR. 

Let us show what this means by a conditional example.  
Let's consider a four-dimensional vector (k=4) for autoregression with lags p=2 and q=1 

at N=40 observations. Then, according to the BIC criterion, a complex autoregressive model 
will have the same chances to be chosen for modeling if its variance is larger than the variance 
of VAR in 

2 ( )2
0,680

2

4 2 1

40 40 9,15CVAR

VAR




+

= = =  times. 

If the VARMA4(2,1) model describes past data and has a variance equal to 10%, it will be 
selected under the BIC information criterion only when the variance of the approximation 
error of the СARMA4(2,1) model must be greater than 91.5%. For a VAR to have a chance of 
being selected under the BIC criterion, the CVAR model must be simply terrible.  

Research on many examples has shown that the VAR model more often approximates the 
data slightly more accurately than the CVAR model - 2 or 3%. We're not talking about 90%. 
The VAR model has no chance of beating the CVAR model in the information criterion 
competition.  
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Research on many examples has shown that the VAR model more often approximates the 
data slightly more accurately than the CVAR model - 2 or 3%. We're not talking about 90%. 
The VAR model has no chance of beating the CVAR model in the information criterion 
competition.  

When the performance vector being modeled contains an odd number of elements, the 
VAR model has a slightly better chance for BIC selection than with an even number of 
elements. But here we should talk about VAR variance being several times smaller than CVAR 
variance, and this is not practically possible.  

The situation is not at all as expected: CVAR models are not at all some alternative to VAR 
models. CVAR models have no alternative in practical application because they will always 
be better than VAR models by BIC or AIC criteria. 

4 Discussion of results 
CVAR models, having less of coefficients requiring estimation, will open new perspectives 
of using a remarkable modeling tool - vector autoregression in practice. Their construction 
of an example of proper objects of modeling is possible for the researcher who does not 
possess knowledge of special sections of mathematics.  

For these prospects to open for researchers, it is necessary to solve some problems.  
The BIC used to select the best autoregressive model will almost always give preference 

to CVAR. But the family of vector autoregressions includes not only CVAR(p) 
autoregressions themselves but also autoregressions considering errors, which we will denote 
as CVARIMAk(p,d,q), where p is the order of autoregressive factors, d is the order of finite 
differences, with which the original data are reduced to a stationary form, q is the lag order 
for autoregressions of errors. The order of finite differences does not play any role in our 
study, and we will not specify it.  

Let us write the VARMAk(p,q)  model form [3]: 

0 1 1 1 1
ˆ ... ...t t p t p t q t qY A AY A Y M U M U− − − −= + + + + + +   (17) 

Here U is the vector of approximation errors, which has the same dimension k as the 
vector of indices Y, and Mj is a square matrix of coefficients. Regarding the errors εt of vector 
U considered, they represent "white noise" with zero mathematical expectation. 

The number q of antecedent vectors of approximation errors U is not equal to the number 
p of antecedent vectors of predicted indicators Y.  

For the two-dimensional case, we write the model (17) in the complex form 
CVARMA2(1,1): 

1, 11 0 1 1 1 1 0 1

2, 12 1 0 2 1 2 1 0

ˆ
ˆ

tt t t

tt t t

y a a y m m
y a a y m m




−−

−−

− −          
= + +          

           (18) 

This model, as compared to the CVAR2(1) model, contains twice as few coefficients, since 
the coefficients of the matrix Mj appear. The transition from a simple model CVARk(p) to a 
more complex model CVARMAk(p,q) increases the dimensionality of the problem to be 
solved (twice as much in the case under consideration). Applying the BIC criterion or some 
other informational criterion to select the best model, we again encounter the fact that these 
criteria act as prohibitive barriers to making the model more complex.  

Let us check under what conditions the transition from the complex CVARk(p) 
autoregression to its more precise modification CVARMAk(p,q) is possible. 

The BIC for the first model will be calculated: 

2
2 lnln

2CVAR
NB k

N
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   (19) 
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For the second model, it is: 

2
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  (20) 

These two criteria will coincide when the equality is fulfilled: 
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2
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ARMA

qk N N
N

 
 

= → =
  (22) 

We use the CVAR4(1) model. Alternatively, we use CVARMA4(1,1). How much more 
accurate should the second model be than the first one at N=40? Let us substitute this data 
into (22) and get that the variance of the CVARMA4(1,1) model should be 2.09 times smaller 
than that of CVAR4(1). Such an increase in accuracy is extremely rare in the domain of simple 
one-dimensional ARIMA(p,d,q) autoregressions and will also be very rare with vector 
autoregressions.  

The information criterion does not allow us to use models other than CVAR to model 
complex economic processes.  

We will get similar results if we compare a simple vector autoregression model with one 
step CVARk(1) with the same models, but with larger lags CVARk(p), where p>1. 

5 Conclusions 
For wide use in the practice of vector autoregressions it is necessary to use their complex-
valued form. This facilitates estimating multiple coefficients of vector autoregressions and 
allows us to estimate coefficients of these models of different dimensions without difficulty.  

When using any information criterion to select the best vector autoregressive model of 
dimension k, we face the fact that this criterion shows as the best model - its simplest form 
CVARk(1). CVARk(p) models and, even more so, CVARMAk(p,q) models lose the competition 
with this simple model by information criteria. 

Actual objects modeled with vector autoregressions are systems with time-distributed 
lags p>1 and a complex structure of relationships with the influence of previous errors on the 
current result. By the meaning of the simulated processes, CVARMAk(p,q) models should 
often be the best, but they do not pass the information criterion.  

To incorporate the rich toolbox of vector autoregressions into modeling practice, another 
criterion for selecting the best autoregressive model must be substantiated than the 
informational criteria that exist today.  
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