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Abstract. In agriculture, the processing of land plots from underground is 
one of the modern problems. To solve this problem, new scientific and 
technical approaches to agricultural technology are required. This article 
presents data on the formation of mole drainage during washing of saline 
soils. The newly created technical device has a thick-walled conical-
cylindrical shape. Here it is experimentally analyzed that the soil is 
deformed and does not lose its stability. Experimental data were obtained by 
numerical element and coordinate methods. It is compared with the results 
of a numerical solution obtained on the basis of an exact circuit of the device. 
The study of nonlinear processes of compression and supercritical 
deformation of the soil forming the mole drainage due to soil pressure is a 
complex and important scientific and technical problem.The discrepancy 
between the results of field and computational experiments, as well as the 
characteristics of the accepted mathematical model and the method of their 
solution, associated with the rough discretization of the original problem, 
are characterized by external pressure forces. Therefore, experimental and 
theoretical studies evaluating the accuracy of methods for numerical analysis 
of nonlinear problems of soil deformation during the formation of mole 
drainage under various types of pressure and loads, as well as the study of 
the influence of initial deficiencies on the results of solutions, are considered 
relevant issues. In this article, mathematical models were created for the 
relationships between deformations, stresses and coordinates of the solution 
of the above problems, as well as their numerical solutions were considered. 

1 Introduction 
The external influences that will be exerted on the conical part of the device for the 

formation of drainage holes, which is associated with a loss of stability, will differ 
significantly from the external influences that will be exerted on the cylindrical part. 
Compression of shells, as a rule, is accompanied not only by bending stresses, but also by the 
appearance of additional stresses (chain stresses) on the middle surface, while for cone and 
cylinder parts we could take into account only compression and bending stresses. Part of the 
load potential of external pressure and impact forces is spent in the shell state to increase the 
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compression energy, the other part – to change the energy of the middle surface. The ratio 
between these values depends on what configuration the shell will receive during 
compression. 

2 Materials and methods 
An experimental-theoretical method was used. In theoretical and numerical studies carried 
out in the work, general methods of soil mechanics and deformable solids are used. Methods 
of mathematical modeling were used in the analysis and generalization of the results [1,4,6]. 

3 Discussion 
When studying the stability of the forming drainage hole, attention is paid to round cone-
cylindrical devices. Devices of this form, theoretically, meet the requirements of the 
complexity of their design and ease of manufacture, so they are widely used in various fields 
of technology. This article offers two approaches to the problem under consideration. The 
first one is based on the well-known solution of nonlinear equations by the Ritz method. This 
makes it possible to change the calculation methods, take into account the influence of 
geometric factors. The second approach is based on considering the problem of device 
stability in drainage systems, taking into account the dynamic processes occurring during the 
washing of land plots from salinization, which brings the theoretical formation of the problem 
closer to experimental observations (Fig.1). 

 

  
a)                      b)                                        с) 

Fig. 1. а) Devices of the mole drainage tool; 1-implement attachment; 2-P-gun shaped frame; 3-trace 
educator (markor); 4-work racks; 5-supporting spike; 6-chisel of working bodies; 7-cone-cylinder 
(drainer); 8-support wheel stands; 9-clamp; 10-cane; 11-compactor-screeder; 12-sprayers. Где  
Overall rack height, м; tillage depth, м;  b) schematic view of the formation of a mole drainage; с) 
formation of mole drainage in the field. 

The influence of maintaining the stability of the device on its shape and magnitude of 
critical impact forces is analyzed. The results of these studies are presented below. Cone-
shaped cylindrical devices are widely used in devices that form drainage holes when washing 
saline areas in agriculture. 

Hooke's ratio can be represented as follows[11,12]: 
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Where −21, tensile (compressive) strains in axial and circumferential directions;  
− shear strain; −wu ,, shell deformation components along the axes zyx ,, ; 

−21,kk principal surface curvatures; −21, bending deformation in axial and 
circumferential directions; normal and shear stresses in the middle surface of the shell; 

−,E  modulus of elasticity and coefficient[8,9,10]. 
Poisson shell material. The equilibrium equations for an arbitrary shell element can be 

writtenas: 
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where − shell thickness; −q  intensity of the acting transverse load.  

Here  
( ) −−

= 2

3

112 
EhD  cylindrical rigidity of the shell during its bending. When 

solving the stability problem as q consider the total projection of the main forces 

spp yx ,,  to the direction of the normal to the surface of the shell. Then 
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Forces that increase the parameters of curvature are considered positive, in particular, 
forces xp and yp   positive if they are contractive. 

Here ( ) −−
= 2

3

112 
EhD cylindrical rigidity of the shell during its bending.The first 

quadratic form of the midsurface will be: 
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Let's move on to the case when the shell is subjected to the action of an external pressure 
uniformly distributed over the lateral surface q  (Fig. 2).  
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Fig. 2. The study of the formation of mole drainage during deformation and for washing saline soils. 

Here −zyx  ,, normal stresses in coordinate areas passing through a given point, 

−zxyzxy  ,, shear stresses, −zyx  ,,  elongation strain, −zxyzxy  ,,
shear deformations. 

This type of loaded is typical for the body of underground washing of saline soils and 
also underground tillage.  

Let us consider the problem of the stability of such a shell in a linear formulation. If the 
circular shell is subjected to external pressure q  and there is no shell bending, then from 
the equation (Fig. 1): 
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When considering isotropic shells, we will introduce into the main relations not the forces 
,,, TNN yx and directly stresses in the middle surface
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The moment equations take the form: 
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The moment equations take the form: 
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Find xQ and yQ from (7) and substitute into (6) 
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Let us determine, further, the stresses in the middle surface: 
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and the moment will be in the following form: 

 
( )




























+




−−=












+



+



−=




















+



+



−=

,
2
11

,1

,1

2

2

2

2

2

2

2

2

2

yx
w

xR
DH

x
w

yRy
wDM

y
w

yRx
wDM

y

x







 (10) 

We introduce expressions (9) and (10) into the equilibrium conditions (8), then we have the 
following system: 
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Where −= 224  double Laplace operator. We have obtained one of the 
variants of the equations of the theory of cylindrical shells in displacements. Let us now turn 
to a simplified version of the linear theory of shells, a new expression for changes in curvature 
has the following form: 
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The equilibrium equations in the projections of the axis tangent to the line and the axis will 
be rewritten in the form: 
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we get at 0[ == yQQ  stresses along the arc equal to .
h
Rqy −=  Thus, the action of the 

transverse load q  equivalent to the action of compressive stresses .
h
RqPy =  Therefore, 

we can use the homogeneous equation: 
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considering only the efforts yP : then we get 
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Accept for   an expression that also satisfies the boundary conditions: 
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transverse load q  equivalent to the action of compressive stresses .
h
RqPy =  Therefore, 

we can use the homogeneous equation: 

 
02

2
4

2

2
4

2

2
4

4

4

2
8 =











+











+










+



+
yx

ws
y
wp

x
wp

x
w

R
Ew

h
D

yx
(14) 

considering only the efforts yP : then we get 
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Accept for   an expression that also satisfies the boundary conditions: 
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from here: 
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Obviously, when determining the critical pressure, it is necessary to take .1=m  
Therefore, in contrast to the case of axial compression, under external pressure, the shell 

must always buckle along the generatrix along one half-wave: this conclusion is confirmed 
by experiments. We introduce the notation 
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This formula is simplified if we accept the conditions: 
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minimize q  on n , we get 
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Substituting (21) into expression (19), we determine the upper critical value: nq  (Fig. 3). 
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the corresponding circumferential stress is 
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If we use new expressions for the moments, and the load zq for stability problems is 
determined by the following equations[13,14]: 
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4 Results 
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Consider the case of a very long shell, when ;RL  expression (27) becomes the 
following:  
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Numerical solutions of cylindrical shells:  
At normal pressure, due to the symmetry of the problem, the shape of the shell must remain 
a cylindrical shell. That is, the system equation (28) must satisfy the solution on which the 
equalities. 
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Numerical solutions of cylindrical shells:  
At normal pressure, due to the symmetry of the problem, the shape of the shell must remain 
a cylindrical shell. That is, the system equation (28) must satisfy the solution on which the 
equalities. 
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In the static case, the relationship between pressure and the relative measurement of the shell 
radius is determined from the relationship .01
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This dependence may have maximum points. So, for example, for the elastic potential, Fig. 
2 shows the dependence of the dimensionless pressure )( 1

Q
h

qRQ ==  from the relative 

increase in the shell radius for values ,3,2,1 === nnn in the elastic potential (4). In 
,2=n this case, the dependence has an asymptote, and at −2n the maximum points 

the maximum points are reached at the values ( )
( )n
n
−
+

=
2

22
1


 
(Fig.3).

 

 
Fig.3. Dependences of the external pressure on the relative change in the shell radius. 

The roots of the right side of this equation ,
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The dependence of the oscillation amplitude on the parameter Q under the initial 
conditions (7) for the elastic potential (1) с ,3,2,1 === nnn is reflected (in Fig. 3). 

The dotted lines for mark 2,1 == nn the boundaries of the values Q  beyond which the 
fluctuations stop (Fig. 4).  
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Internal force factors for axisymmetric deformation of the shell with a circumferential force: 
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Equilibrium equation of a cylindrical shell in displacements, its integration. 
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Here 
)1(12 2

3

−
=

EhD -  cylindrical rigidity of the shell during its bending. 

Numerical solutions normal stresses in the cross section of the shell at a distance z from the 
middle surface of the shell are determined according to Hooke's law (Fig. 1 and Fig. 5) 
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For example ,102,2,08,0,1 3
8

м
нKммR прв ===  The found value of the 

reduced modulus of elasticity of the layer was ,10691,1 2
7

м
нEпр =  

Note that a formula similar to (36) but not taking into account the deformation of the layer 
in the circumferential direction is given in [7]. It lacks a term containing the natural 
logarithm. 

It should be noted that for elastic layers with a thickness of 
)4,008,0(4,008,0 впрв RRмдо   . The calculated values of the maximum 

displacements and stresses in the shell turned out to be quite close and agree well with similar 
results obtained using other soil models. This confirms the validity of formula (36) and the 
assumptions made in its derivation table 1 and [1] (Fig. 5). 

Table 1. Maximum displacements and equivalent sheath stresses. 

Options 
NDS 

Optio
n 1 

Optio
n 2 

Option 3 
мпр 08,0=  

Option 3 
мпр 1,0=  

Option 3 
мпр 2,0=  

Option 3 
мпр 3,0=  

 

Option 3 
мпр 4,0=  
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7,817

4 7,0483 7,0454 8,0316 8,0176 8,0628 
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=  5,138

1 
5,098

6 5,1358 5,1376 5,1366 5,1282 5,1389 

2
510

M
NH

экв
=  5,479

9 
5,540

0 5,6483 5,6484 5,6440 5,6338 5,6443 

 
Fig. 5. Dependencies of circular transverse stress on circular residual and elastic deformations. 

5 Conclusion 
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1. In general, the results of numerical and experimental studies allow us to conclude that 
the computational model [1, 2, 3, 4, 6] qualitatively correctly and quantitatively satisfactorily 
describes the deformation and buckling of thin-walled cylindrical shells during bending. 

2. Static problems for long-cylinder shells were solved by the German scientist A. L. 
Goldenweiser, who was seen in the theory. In the proposed article, analytical and numerical 
solutions were obtained for external pondomotor forces and stresses of soil deformation in 
agriculture. 

3. A technique has been developed that takes into account the one-sided contact 
interaction of the shell and the soil base and allows comparing three types of soil models 
surrounding the shell: the Fuss-Winkler base, the model of the elastic layer and the 
volumetric array. As a result of the analysis of these models, it was found that the SSS 
characteristics of the "shell - surrounding soil" system turned out to be relatively close both 
qualitatively and quantitatively in all three cases. 

4. The speed of a loaded shell significantly affects the critical dynamic pressure, 
increasing the value of the critical load during short-term loaded. 

5. In problems of the stability of a round cylindrical shell, a linear statement is 
considered. Note that when ,; 3

2

R
DnqRL −=  and at 
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which exceeds the external pressure by 33%.  
6. This illustrates that the scope of application of the approximate equations of the theory 

of shells of average length is limited and that the error of the calculation results in some cases 
can be significant..  

7. However, from a practical point of view, these cases are rather exceptions; for the case 
of external pressure, surfaces isothermal to the cylinder can be constructed in a similar way. 
The results obtained can be used as test examples in the development of numerical methods 
for solving nonlinear equations of deformation of external pressure shells. 

8. An analysis of the stress-strain state of the shell showed that in the subcritical stage, 
its deformation occurs in the elastic zone. After the loss of stability in the zone of 
corrugations, plastic deformations of the order of 4–7% are formed, which corresponds to the 
experimental data. 

9. The proposed method consists in calculating the dynamic stability of cylindrical shells 
when loaded with external overpressure distributed over the shell surface. As an example, 
the case is considered when the pressure changes in accordance with the linear law. 
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