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Abstract. The paper presents a method for solving the problem of changing 
a full-connected neural network of direct propagation with a sigmoid 
activation function in the conditions of the emergence of a new class, with 
the ability to preserve the network to recognize already known classes and 
to classify objects of a new class. Such conditions generate a new neural 
network, which is trained on examples of all classes, including the new class. 
The learning process takes a long time and requires the selection of several 
parameters. The emergence of a new class in natural neural networks does 
not cause a transformation of the network structure, only the strength of 
connections between neurons changes. The network shows the properties of 
stability and plasticity at the same time. The authors draw attention to the 
analogy between neural networks and holograms in their ability to store 
information and form an image of a class in response to an input signal. 
Following the holographic analogy, the paper proposes a model of the wave 
nature of neural networks, which treats the network weights as a hologram 
and the input signal as a wave passing through a hologram. The construction 
of a new network is created with two neural networks, which are a 
combination of two holograms. The first hologram represents the original 
network, and the second is a new network with a similar structure, but it is 
trained to recognize one new class. The addition of the holograms of these 
neural networks implements the mechanisms of plasticity and stability in the 
model. 

1 Introduction 
Artificial neural networks have become a popular tool for solving many problems. 

Examples of neural networks show how they perform well in classification tasks on 
predefined sets of classes. Information systems face the emergence of new classes because 
of external factors or internal reasons. A neural network becomes incapable of differentiating 
a new class under such conditions. We face creating a new network capable of recognizing 
both already known classes and a new class. 

The task is to create and train a new neural network, while training remains a very time-
consuming process with the selection of many empirical parameters. Parameters in full-link 
multilayer neural networks affect the learning time and quality. It is impossible to be sure in 
advance to achieve the expected result in a certain time. 
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Forming a network by constructive methods looks like a solution to the problem. They 
model the mechanisms that are involved in the formation of natural neural networks, 
providing plasticity and stability. 

Existing constructive algorithms offer ways that, through the addition of neurons, create 
changed networks that can classify new images. Here, network training is required after each 
addition of neurons or neuron complexes. The disadvantage of such methods is the necessity 
of strictly controlling the appearance of an excessive number of neurons [1, 2]. 

Constructive methods are suitable at the beginning of neural network formation when 
each new class can generate one or more new neurons in the network structure, which at the 
initial stages does not affect significantly the total number of neurons and training time. As 
the number of classes grows, the number of neurons and the number of connections between 
them increases. With an excessive number of neurons and many connections, the neural 
network loses its ability to generalize and reacts to noise [3]. While the existing number of 
neurons and network layers is enough to recognize more classes. 

Observation of natural neural networks shows that the network structure changes not so 
often and dramatically. Only in early ontogenesis, when the active formation of a neuronal 
network is in progress, there is an addition of neurons to the network, formation of neuronal 
connections, and even their restructuring by breaking existing connections [4]. 

Functional plasticity appears in the mature neural network, associated with increased 
reactivity of neurons exposed to stimulation and functional change of connections [5]. 
Prolonged exposure of neurons during the learning process leads to changes in their 
metabolic activity and synaptic membrane permeability, actually changing the strength of 
connections. 

So, learning of an already formed natural neural network does not lead to the addition of 
new neurons. There is not a quantitative, but a qualitative transformation of a neural network 
because of changes in connections between neurons [6, 7]. 

According to neurophysiological observations of D. Hebb, if neurons on both sides of a 
synapse are activated simultaneously and regularly, the strength of synaptic communication 
increases [8]. An important feature of this rule is that the change in synaptic weight depends 
only on the activity of the neurons connected by the synapse. 

Connections between neurons do not exist in isolation. O.V. Kuznetsov noted holographic 
properties of neural networks in the example of the human brain: distribution of information 
in the network and its preservation [17]. G. Shepherd noted that natural neural networks show 
stability through the replacement of damaged nerve pathways by competing for the 
possession of synaptic regions [18]. The systemic properties of the entire neural network 
compensate for the poor reliability of individual connections and neurons, ensuring stability. 

The properties of plasticity and stability of neural networks lead to the analogy with 
holographic images. Works [9-14] put forward a hypothesis about the similarity of 
information processes in optical holography with information processes in the brain. 

Nowadays, physics deals not only with optical holograms. The common feature of 
holograms is their wave nature. Any hologram is a wave pattern recorded in some medium, 
corresponding to the interference of coherent waves having a common source. Modern 
studies admit the existence of more complex holograms formed by sources of non-
monochromatic and incoherent waves. 

Works [15, 16] show that we can achieve switching between spontaneous activity patterns 
on neuronal cultures, showing long-term stability of activity under external electrical 
stimulation. Without changing the structure of the network, we can achieve a new behavior 
with new knowledge without traditional training procedures. You can transfer new 
information into the neural network, despite its holographic stability when it is externally 
stimulated, to achieve a new behavior with new knowledge without traditional training 
procedures. 
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The problem is to add a new class to the network with minimal training, so as not to train 
all classes again. The optimal solution is to create and train a new neural network with one 
class, and then combine it with the existing neural network. 

2 Materials and methods  
It follows from the holographic nature of neural networks: an effect on only one connection 
will lead to a change in the properties of the entire network to some extent. As in holograms, 
only significant interventions in connections will cause qualitative changes. 

We can consider a neural network (its weights and structure) as a hologram, having made 
some simplifications. We assume coherent waves form a hologram, and the thickness of the 
hologram registration medium will be negligibly small. Then the input signal of the neural 
network passing through it will generate an image of the class corresponding to it, like a wave 
restoring an image from the holographic plate. 

Having two neural networks 𝑁𝑁1 and 𝑁𝑁2 with the same structure, differing only by weight 
coefficients of connections and trained to recognize different classes, we will consider them 
as holograms. 

The first neural network is trained on examples of the set 𝑃𝑃1, partitioned into a set of 
classes С1 , the second one is trained on 𝑃𝑃2, partitioned into classes С2. In the original problem 
statement, the power m(С2)=1. 

If you combine two holograms in space and apply different signals to them, the classes 
corresponding to the signals will be reconstructed. The signals 𝑝𝑝1 ∈ 𝑃𝑃1 on hologram 𝑁𝑁1 will 
recreate the corresponding с1 ⊂ С1, 𝑝𝑝2 ∈ 𝑃𝑃2 on 𝑁𝑁2  will recreate с2 ⊂ С2. Since the signals 
will hit both holograms, they will distort the result: either amplifying it or reducing it, i.e. 
intervening connections of the two neural networks. 

Since the conditions of hologram formation and its orientation in space are unknown, we 
can only suppose that refine transformations should apply to one hologram for better 
alignment. Let us choose one network as the base one - 𝑁𝑁1, the second one as a changing one 
- 𝑁𝑁2. 

Let us assume that space is Euclidean and the rotation in space does not exceed 𝜋𝜋. Thus 
the hologram will change: the phase difference fixed on the plate will change by ∆𝜑𝜑 at each 
point of the plate (in general each class will have its ∆𝜑𝜑, but since m(С2)=1, we can assume 
that ∆𝜑𝜑 for 𝑁𝑁2 is one). 

To perform the hologram addition, it is necessary to change from the amplitude-frequency 
representation to the frequency-phase representation. We use the fast Fourier transform for 
the discrete signal, which allows us to avoid increasing the complexity of the algorithm to 
𝑂𝑂(𝑁𝑁2) and keep it at 𝑂𝑂(𝑁𝑁 𝑙𝑙𝑙𝑙𝑙𝑙 𝑁𝑁). 

For the 𝑁𝑁1 neural network with weight coefficients 𝑤𝑤𝑖𝑖𝑖𝑖
1  (𝑖𝑖 = 1. . 𝑚𝑚, 𝑗𝑗 = 1. . 𝑛𝑛) we obtain 

the weight coefficients:  

 𝑤𝑤𝑖𝑖𝑖𝑖
1′ = 𝐹𝐹(𝑤𝑤11

1 , … , 𝑤𝑤𝑖𝑖𝑖𝑖
1 , … , 𝑤𝑤𝑚𝑚𝑚𝑚

1 ) (𝑖𝑖 = 1. . 𝑚𝑚, 𝑗𝑗 = 1. . 𝑛𝑛) (1) 

where 𝐹𝐹 is the fast Fourier transform. 
Neural network 𝑁𝑁2 пafter the transformation will have weighting coefficients: 

 𝑤𝑤𝑖𝑖𝑖𝑖
2′ = 𝐹𝐹(𝑤𝑤11

2 , … , 𝑤𝑤𝑖𝑖𝑖𝑖
2 , … , 𝑤𝑤𝑚𝑚𝑚𝑚

2 ) + ∆𝜑𝜑, (𝑖𝑖 = 1. . 𝑚𝑚, 𝑗𝑗 = 1. . 𝑛𝑛) (2) 

By adding the transformed weights of neural networks 𝑁𝑁1 and 𝑁𝑁2, we get the weights of 
the new neural network  𝑁𝑁3:  

 𝑤𝑤𝑖𝑖𝑖𝑖
3′ = 𝑤𝑤𝑖𝑖𝑖𝑖

1′ + 𝑤𝑤𝑖𝑖𝑖𝑖
2′, (𝑖𝑖 = 1. . 𝑚𝑚, 𝑗𝑗 = 1. . 𝑛𝑛) (3) 
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The weight coefficients of 𝑤𝑤𝑖𝑖𝑖𝑖
3′ in the inverse Fourier transform are complex numbers, so 

we can apply the Hartley transform to get the real coefficients of the 𝑁𝑁3 neural network 

 𝑤𝑤𝑖𝑖𝑖𝑖
3 = 𝐻𝐻(𝑤𝑤𝑖𝑖𝑖𝑖

3′) (4) 

Then function 𝐺𝐺1 = 𝐺𝐺1(𝑤𝑤11
3 , … , 𝑤𝑤𝑖𝑖𝑖𝑖

3 , … , 𝑤𝑤𝑚𝑚𝑚𝑚
3 ) – is the percentage of correctly distributed 

examples 𝑝𝑝𝑘𝑘 ∈ 𝑃𝑃1,  𝑐𝑐𝑠𝑠 ⊂ 𝐶𝐶1, 𝑝𝑝𝑘𝑘 ∈  𝑐𝑐𝑠𝑠 neural network 𝑁𝑁3. Similarly, we define  𝐺𝐺2 =
𝐺𝐺2(𝑤𝑤11

3 , … , 𝑤𝑤𝑖𝑖𝑖𝑖
3 , … , 𝑤𝑤𝑚𝑚𝑚𝑚

3 ) – the percentage of correctly distributed examples 𝑝𝑝𝑡𝑡 ∈ 𝑃𝑃2,  𝑐𝑐𝑢𝑢 ⊂
𝐶𝐶2, 𝑝𝑝𝑡𝑡 ∈  𝑐𝑐𝑢𝑢 neural network 𝑁𝑁3. 

We can represent the target function for the new neural network as  

 𝐺𝐺3 = 𝐺𝐺3(𝑤𝑤11
3 , … , 𝑤𝑤𝑖𝑖𝑖𝑖

3 , … , 𝑤𝑤𝑚𝑚𝑚𝑚
3 ) → 𝑚𝑚𝑚𝑚𝑚𝑚, |𝐺𝐺1 − 𝐺𝐺2| → 0 (5) 

Thus, we achieve not only the maximum 𝐺𝐺3, but also guarantee the balance of the neural 
network in the recognition of classes from the sets С1 and С2. Depending on the problem, we 
can redefine the target function by relaxing the condition |𝐺𝐺1 − 𝐺𝐺2| → 0. Maximizing 
𝐺𝐺3 without this condition does not guarantee that 𝑁𝑁3 will recognize classes С1 ∪ С2 equally 
well. 

It is possible, for example, to require that the network keeps the ability to recognize С1 
classes in full and in part, but with a high percentage of new classes. Or on the contrary, we 
can simulate the process of "forgetting" by reducing the requirements for 𝐺𝐺1 and requiring a 
maximum for 𝐺𝐺2. Thus, not only the maximum 𝐺𝐺3 is achieved, but also the balance of the 
neural network in the recognition of classes from the sets С1 and С2 is guaranteed. Of course, 
depending on the problem, it is possible to redefine the target function by relaxing the 
condition |𝐺𝐺1 − 𝐺𝐺2| → 0. Maximizing 𝐺𝐺3 without this condition does not guarantee that 
𝑁𝑁3 will recognize classes С1 ∪ С2 equally well. 

Networks are trained to recognize different classes have different weights with the same 
structure. Networks trained on only a class have weakly expressed connections, 
approximately from the same range. Neural networks trained on more classes have more 
pronounced connections than those trained on one class, Table 1. 

Table 1. Average weights of networks trained in grades 1-4 of handwritten digits. 

Number of classes 1 2 3 4 
Minimum value -0,04255 -3,25154 -5,54 -72,71 
Maximum value 0,046264 2,893664 4,94 71,52 

Range 0,088815 6,145204 10,48 144,23 
Arithmetic mean. 0,002732 -0,00956 -0,06 0,02 

Mean square deviation 0,021148 0,350034 0,64 6,20 
 
To stress the force of the neural network's connections, the forces 𝑁𝑁2 in its connections 

can be scaled by the connections 𝑁𝑁1, replacing (2) with 

 𝑤𝑤𝑖𝑖𝑖𝑖
2′ = 𝐹𝐹(𝑘𝑘𝑤𝑤11

2 , … , 𝑘𝑘𝑤𝑤𝑖𝑖𝑖𝑖
2 , … , 𝑘𝑘𝑤𝑤𝑚𝑚𝑚𝑚

2 ) + ∆𝜑𝜑, (𝑖𝑖 = 1. . 𝑚𝑚, 𝑗𝑗 = 1. . 𝑛𝑛) (6) 

We experimentally tested the method on a set of handwritten digits from the MNIST 
database. Neural networks were trained on a different number of classes of handwritten 
digits, and then a new digit class was added to them. Both neural networks 𝑁𝑁1 and 𝑁𝑁2 were 
created with the same structures, and the number of outputs in both networks was set equal 
to 𝑚𝑚(𝐶𝐶1 ∪ 𝐶𝐶2). Then 𝑁𝑁1  was trained to recognize 𝐶𝐶1 classes, and 𝑁𝑁2 a new class, after which 
we applied a holographic method to the networks. 
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The proposed method depends on two parameters: the scaling factor k and the rotation angle 
∆𝜑𝜑. 

Different values of 𝐺𝐺1 and 𝐺𝐺2 can be achieved with different ∆𝜑𝜑, for example, when 
adding networks capable of recognizing only one class, we get a result similar to Fig. 1. 

 
Fig. 1. Graphs of the function 𝐺𝐺1, 𝐺𝐺2, 𝐺𝐺3: 𝐺𝐺1 - recognize digit 1, 𝐺𝐺2  - recognize digit 2, 𝐺𝐺3 - 
recognize digits 1 and 2. 

The graph shows that for the case m(С1)=1, there is a ∆𝜑𝜑 at which 𝐺𝐺3 reaches a maximum 
close to 100%. The experiment showed that if the original networks can recognize their 
classes with an accuracy close to 100%, the resulting network also shows an accuracy close 
to 100%.  

The more classes the neural networks can recognize, the more complicated for analysis 
of the graphs of functions 𝐺𝐺1, 𝐺𝐺2, 𝐺𝐺3, Fig. 2. 

 
Fig. 2. Function graphs 𝐺𝐺1, 𝐺𝐺2, 𝐺𝐺3: 𝐺𝐺1  - handwritten digit recognition 0 and 1, 𝐺𝐺2 - handwritten digit 
recognition 2, 𝐺𝐺3 - handwritten digit recognition 0, 1, and 2. 

We note that the functions 𝐺𝐺1, 𝐺𝐺2, 𝐺𝐺3 have a fractal form because of the wave nature of 
the model (Figures 1 and 2). The optimal value of 𝐺𝐺3 in fragments may vary, but there is a 
limiting value of 𝐺𝐺3 under optimality conditions (5). 

Therefore, we can search for ∆𝜑𝜑 within a single fragment of self-similar parts of the 
graph. The difficulty of the search is related to the fractality of the target function. If you use 
a brute-force algorithm, choose the step change of ∆𝜑𝜑 as small as possible. This does not 
guarantee that even with a small step of ∆𝜑𝜑, you will hit the local maximum 𝐺𝐺3 on the 
fragment. 

To get the best result, we can scale connections of the neural network 𝑁𝑁2 by connections 
of the neural network 𝑁𝑁1  with the coefficient 𝑘𝑘, chosen empirically. 
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Because of the holographic nature of the neural network, scaling in some limits does not 
affect the ability of the neural network to recognize classes known to it. If all weight 
coefficients are scaled simultaneously with some coefficient 𝑘𝑘, it will change the slope of the 
neuron sigmoid. It will not significantly affect the network with small values of weights, but 
when weights are added to weights of the network with more significant coefficients, it will 
help to strengthen the effect on the result. The scaling factor has no significant effect on the 
optimal value in the sense of (5), only changing the conditions for finding this value for the 
set ∆𝜑𝜑𝑖𝑖 (𝑖𝑖 ∈ 𝑁𝑁). 

The choice of the basic and changing neural network is important, if  𝑚𝑚(С1) = 𝑚𝑚(С2) =
1, then we choose the basic function experimentally. An incorrectly chosen basis function 
gives 𝐺𝐺1 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 0  or 𝐺𝐺2 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 0. In this case, we should swap the basic and 
modifying neural networks. 

Searching for the optimum depending on the problem (the number of classes 𝑁𝑁1 and their 
peculiarities). The method demonstrates the ability of the neural network to store the old 
knowledge and accept the new at the same time. 

We can apply this method to speed up the learning process by training a neural network 
quickly on a single class, and then using it to change an existing network trained on multiple 
classes. The resulting network can be pre-trained, which is faster than creating and training a 
new network. 

The question of the fractal nature of the target function and determination of conditions 
for finding its maximum by a minimum enumeration of ∆𝜑𝜑 values, the possibility of 
introducing additional parameters into the model that increases the efficiency of the method 
requires further research. 

4 Conclusion 
The holographic method, unlike other constructive methods, does not require complete 
retraining of the network in conditions of new classes. It is enough to create a network with 
the same structure as the old network, train the new network with one class and stack it with 
the existing network. It is much faster to train a network in a single class than to train the 
entire network in all classes (old and new in aggregate). 

By relaxing the optimality requirements (5), we can vary the gained knowledge of the 
neural network, emphasizing more plasticity or stability. As in natural neural networks, 
acquiring new experience influences existing knowledge. 

We can use the method of learning. We can retrain the constructed network to improve 
accuracy. The time to construct and retrain in aggregate would be considerably less than the 
time to create and train a new network based on all classes. 

The perspective of the holographic method idea is the possibility of transferring 
knowledge from one neural network to another, bypassing the long training procedures. 
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