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Abstract. Reinforced concrete (RC) buildings have suffered severe 

damage in the past due to inadequate lateral force resistance or energy 

dissipation capability. There is a need to improve the seismic performance 

of existing, vulnerable RC structures, particularly those that were either not 

initially intended for seismic effects or were planned to an obsolete seismic 

standard. Friction dampers are a revolutionary technique for improving 

lateral force resistance and energy dissipation capacity in the seismic 

retrofit of RC buildings. In this study, energy dissipation in seismically 

retrofitted RC buildings using friction dampers is investigated. An 

investigation of the nonlinear response history was performed after friction 

dampers were applied to the RC building. The analysis results indicate that 

the peak story drift ratios are reduced and constant throughout the height of 

the building, which may be a sign that the structure has not suffered soft 

story damage. In addition, the total friction damper’s energy-dissipation is 

half of the total input energy. 

1. Introduction 

Numerous older reinforced concrete (RC) buildings have been destroyed in recent 

earthquakes as a result of their insufficient lateral force resisting systems [1-6]. Demolition 

of seismically unstable existing buildings and replacement with new construction is an 

option based on these criteria, but it is generally time-consuming and costly. Furthermore, 

when the number of schools or hospitals in a rural location is limited, rebuilding imposes 

additional costs because there may be few alternative facilities to undertake education or 

medical services. As a result, ancient RC buildings that were either not prepared for seismic 

effects or were created to an outdated seismic criterion must be retrofitted. The seismic 

retrofit typically refers to new seismic design guidelines to make sure the retrofitted RC 

building can resist future earthquakes. 

 Some of the most often used retrofit techniques for RC frames to increase the lateral force 

capacity include the construction of RC walls [7-8], the addition of conventional steel 
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bracing [9–11], and the wrapping of the RC columns with carbon fiber reinforced polymers 

(CFRPs) [12-13]. The usual braced frame method has shown to be advantageous since the 

braces may be prefabricated and weigh less than the additional structural walls [11–13]. 

Installation of friction dampers and other energy dissipation devices [14-17] is a cutting-

edge technique used recently to enhance the seismic performance of RC structures. 

However, an energy-dissipation in seismic retrofit RC buildings with friction dampers is 

lack investigation. Therefore, this study investigates the energy dissipation in seismically 

retrofitted RC buildings using friction dampers. The RC school building is used as an 

example building. Nonlinear response history was performed and used to compare the 

seismic performance of a bare RC frame to a retrofitted RC building with the friction 

damper. 

2. Seismic retrofit design method 

The constant drift method [14, 18–21] is selected in this study to design the requirement for 

friction dampers since it is effective in managing the peak story drift ratio and close to the 

specified target story drift ratio. The step-by-step retrofit design approach can be summed 

up as follows: 

1. Conduct a nonlinear modal pushover analysis (based on the fundamental mode) 

and fit the roof displacement - base shear relationship to a trilinear backbone with 

elastic, cracked and yielding stages. Also obtain the story strengths of the existing 

RC frame (Qfy,i).  

2. Convert the RC frame into a simplified SDOFRC model, as shown in Fig 1 and 

determine the energy dissipation (Ef) of the current structure at the target drift 

(θtar). 
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Fig. 1. Simplification of the RC building to SDOFRC. 

3.  Determine the maximum story drift of the current RC frame using the SDOFRC 

(θfμ), keeping in mind that the frame might not be proportioned to produce a 

consistent drift profile. The building needs a seismic retrofit if the maximum story 

drift is greater than the target story drift (θtar), but not if it is less than θtar. Then, 

distribute the story friction damper force (Fd,i) vertically along the height of the 

building, as indicated in Fig .2. 
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Fig. 2. Seismic retrofit distribution and configuration. 

3. Seismic Region and Retrofit Design Results 

Chiang Rai, Thailand's northernmost region has been selected to be the location because the 

location is one of the highest seismic regions in Thailand. Therefore, several buildings in 

this location should be seismically retrofit. A four-story local RC school building is used as 

an example for the seismic retrofit of this study. The frame measurements and member 

sizes, while the seismic mass was computed as 184 tons for the first to third levels and 171 

tons for the fourth story, using the lowest stated strengths for the 24 MPa concrete and 300 

MPa rebar. The same modeling assumptions as specified in the earlier BRB retrofit 

research when full information about the example building is provided [20] were used to 

create three-dimensional numerical models using ETABS [22]. The following is a synopsis 

of the suggested step-by-step retrofit design method: 

1. The first three periods were determined by modal analysis to be 1.249 sec for 

longitudinal translation, 0.871 sec for torsional deformation, and 0.830 sec for 

transverse translation. Using a nonlinear modal pushover analysis (based on the 

fundamental mode), the roof displacement - base shear relationship was fitted to a 

tri-linear decaying backbone curve with elastic, cracked, and post-yielding phases. 

2. It was determined what the SDOFRC properties were: Heq = 10 m (73.5% of the 

building height), Meq = 577 tons (80% of the overall mass), Kf,l = 14.6 kN/mm 

(longitudinal lateral stiffness), and Kf,t = 33.1 kN/mm (transverse lateral stiffness). 

3. To prevent damage to drift-sensitive nonstructural components and increase the 

likelihood of an immediate occupancy seismic performance level under the design 

basis earthquake (DBE) level acceleration and displacement spectra as shown in 

Figs. 3 and 4, respectively, a target story drift ratio of 1/200 rad. (0.5% rad.) was 

chosen. The DBE displacement spectrum (Fig. 4) indicated SDOFRC displacements 

of δd,l = 76 mm in the longitudinal direction and δd,t = 48 mm in the transverse 

direction, with corresponding peak story drifts of δd,l / Heq = 0.76% and δd,t / Heq = 

0.48%. The result indicated that peak story drifts of only the longitudinal direction 

exceeded the target story drift of 0.5% rad. Therefore, only in the longitudinal 

direction was a refit necessary. for the purpose of protecting drift-sensitive 
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nonstructural components and raising the chance that the seismic performance level 

will be reached immediately after occupancy. 
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Fig. 3. Acceleration spectrum design for Chiang Rai, Thailand 
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Fig. 4. Displacement spectrum for Chiang Rai, Thailand 

4. The friction dampers are then designed, and the necessary friction damper strengths 

for seismic retrofit in the longitudinal direction are indicated in Table 1. 

Table 1. Summary design results for the longitudinal direction 

 

Story 
Existing RC frame  Friction damper 

Qfy,i (kN) Fd,i (kN) 

4th  1228 - 

3rd 1127 155.02 

2nd 1124 313.6 

1st 1586 159 
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4. Analysis Results 

Nonlinear response history analysis (NLRHA) is performed on the bare RC frame and 

retrofitted RC building with friction dampers using five ground motions to investigate and 

compare the seismic response and the buildings’ performance. 

4.1 Analysis model 

The sample building chosen is a four-story RC school. To examine the impact of the SF on 

the seismic performance of retrofitted RC structures with friction dampers, three-

dimensional (3-D) models were developed. Each section of the bare RC frame was defined, 

as the fiber section. Fig. 5 depicts the retrofit using simply the friction damper model. The 

bare RC frame model and detailed information are presented in [20] and the friction damper 

was modeled with the Wen model [23]. The friction dampers are placed at the location to 

avoid the torsional effect.  

 

 
Fig. 5., Three-dimensional (3-D) model of retrofitted RC structures with friction dampers 

4.2. Ground motions for NLRHA 

A suite of five scaled single component records is selected from the PEER NGA2 ground 

motion database 2 [24]. The scaled DBE demand spectra are shown in Fig. 6. The scaling is 

conducted over a target period range from 0.2T1 to 1.5T1, which follows ASCE 7-16 

requirements [25], where T1 (1.249 sec) is the fundamental period of the bare RC frame, 

resulting in a target period range of 0.250 to 1.874 sec. The records are limited to strike-slip 

events with magnitudes of 6 ≤ Mw ≤ 7.5 within 20 km fault distance and on soil class D 

(180 ≤ Vs,30 ≤ 360 m/s). Selected data is consistent with the dominant seismic hazard risk in 

the Chiang Rai province, Thailand, which corresponds to the target building location and 

local site conditions. The scale factors of the ground motions vary between 0.68 and 1.69. 
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Fig. 6. DBE level spectrum and scaled ground motion elastic response spectra (5% damped) 

4.3. Peak inter-story drift ratio 

Fig. 7a and Fig. 7b show the peak inter-story drift ratio of bare RC frame and retrofitted 

building, respectively. The NLRHA results of the bare RC frame, as shown in Fig. 7a , 

indicate that all stories except the 4th story exceed the target story drift ratio of 0.5% rad., 

which corresponds to the design result that the 4th story does not require the friction 

damper.  

The NLRHA results of the retrofitted building, as shown in Fig. 7b, indicate that the 

seismic retrofit with the friction damper may reduce the peak inter-story drift ratio 

significantly. In addition, the peak story drift ratios are uniform along the building height, 

which is the advantage of the selected constant drift method. This may imply that the 

building does not have the soft story damage after being retrofitted with the friction 

damper. 
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   Fig. 7. Peak inter-story drift ratio  

4.4 Energy-dissipation 

Fig. 8 presents the ratio of energy dissipated by friction dampers to the total input energy. 

The energy dissipation ratio (RE) 

     RE = Ed / EI   (1) 
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where Ed is the hysteretic energy dissipated by the friction dampers and EI is the total input 

energy. The NLRHA results indicate that the total friction damper’s energy-dissipation is 

about 50% of the total input energy. 
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Fig. 8. Energy-dissipation by friction damper 

5. Conclusion 

This study investigates the energy-dissipation in seismic retrofit RC building with friction 

dampers. The NLRHA results indicated that the peak inter-story drift ratios were 

substantially improved after retrofitting the existing RC building with the friction damper, 

which may imply that the building does not have the soft story damage after retrofitting 

with the friction damper. Additionally, the total friction damper’s energy-dissipation is half 

of the total input energy. 
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