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Abstract. With zero emissions to the environment, electric vehicles (EVs) 

are the most environmentally friendly mode of transportation. The 

placement of EV charging stations (EVCS) in the Radial Distribution 

Network (RDN) is necessary to satisfy the demand of charging in various 

places while minimizing power loss on the power system networks. In the 

distribution system, distributed generation (DG) not only reduces power loss 

but also enhances power quality. To fully utilize the benefits of DG, it is 

necessary to find the optimal location and size in the distribution system. In 

this work, the ideal installation of EVCS has been consistently demonstrated 

in the IEEE 33 bus distribution network. In order to provide widespread 

charging facilities, the RDN has been split into three regions, and it has been 

established that each area has one charging station placed. The main purpose 

is to minimize the Active Power Loss and Voltage Deviation Index (VDI) 

to maintain a healthy power system network. Adding DG to the appropriate 

EV Station is obtained through optimization. This problem has been 

formulated as a problem of optimization for finding the best location to 

install EVCS in the IEEE 33 bus RDN by using the Symbiotic Organisms 

Search (SOS) algorithm. The obtained results have been validated and 

compared using the Grey Wolf Optimizer (GWO) and Whale Optimization 

Algorithm (WOA).  

1 Introduction 

The main factors influencing the popularity of electric vehicles are environmental 

degradation and the crisis of fossil fuels [1]. The photovoltaic (PV) energized EV technology 

has been verified to reduce greenhouse gas emissions by 47% to 78%, and the rate of interest 

and feed-in rate for Power generation may be utilized as policy-making elements to build 

limited carbon transportation networks [2]. The current situation's availability of electric 

vehicles causes a significant increase in the entire necessity for electrical power. Power 

generation must be enhanced in the same proportion in order to resolve this issue [3]. EVCS 

is a prerequisite for EV users in addition to charging their vehicles. Infrastructure for charging 

EVs must be established for widespread adoption [4]. The distance between an EV customer's 
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home and the closest charging station must be taken into account by the planner as it impacts 

how rapidly the battery can be recharged. Therefore, a charging station should be installed in 

an area with a high density of EV ownership or use. This will minimize the EV customer's 

daily travel expenses [5]. As a result, it's necessary to carefully add DG and distribute EVCS 

to the distribution network so that active power loss and VDI may be reduced to a minimum 

and the voltage profile is acceptable. 

     In [6], it is observed that the distribution system is significantly impacted when the EV 

charging station's position is determined using the GWO and WOA. An EV optimal charging 

model is developed in [7] for the change of load characteristics. In [8], the presented approach 

accurately identifies the best position and the capacity of one or more voltage-controlled 

DG(s) for minimizing power loss. In [9] use the new optimization technique known as 

accelerated PSO for the positioning and size of DG concerns and maintained systems power 

loss in the distribution system. The authors in [10], provide a unique method for 

analyzing the dependability of radial distribution networks that may be utilized to cut down 

on maintenance durations and component failure rates. On the basis of this, a technique for 

calculating the maximum capacity of DG integration in a distribution system is suggested. In 

[11]–[14], the researchers ensured that EVCS was implemented correctly by utilizing a 

variety of soft computing techniques. In [15], the prototype was assembled and successfully 

tested to charge a PHEV vehicle. This can justify both conventional and instant charging.  

      The key priority of the proposed work is to reduce active power loss and VDI in order to 

locate DG and EVCS optimally within the IEEE 33 bus distribution network. To make EVCS 

widely available to consumers, the distribution network is split into three sections. After G2V 

and V2G configuration analysis, the charging stations are put in optimal areas to minimize 

active power loss and VDI with DG while maintaining a strong power system network. The 

GWO, WOA and SOS method has been used to resolve the issue, which has been presented 

as an optimization problem. A secure and robust power system network has also been 

definite. 

2 Problem Formulation 

2.1 Minimization of Active Power Loss: 

DG has been incorporated system for reducing power loss. The optimization and sizing of 

DG units for a single objective problem were executed for this research project in order to 

minimize the active power loss. 

     Assuming the 𝑙𝑡ℎ branch of the distribution network. Here  𝑍𝑙 , 𝑅𝑙 , 𝑋𝑙, and 𝐼𝑙is the 

impedance, resistance, reactance, and current passing through the   𝑙𝑡ℎ branch.  

     Separating the impedance 𝑍𝑙  real and imaginary components provide, 

𝑍𝑙 = 𝑅𝑙 + 𝑗𝑋𝑙                                                                                                                                     (1) 

     Thus,  𝑆𝑙  is determined by the entire apparent power loss, 

 𝑆𝑙 = (𝐼𝑙)2 × 𝑍𝑙                                                                                                                                          (2)    

     The procedures needed to determine the network's overall load, 

 𝑡𝐿𝑂𝐴𝐷 = ∑ 𝑝𝐸𝑋
𝑙𝑆𝑁𝑙𝑆

𝑙𝑆=1
+ 𝑝𝐸𝑉𝐶𝑆

𝑙𝑆                                                                                                   (3)    
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 Where, 𝑡𝐿𝑂𝐴𝐷 = network’s overall load, 

        𝑁𝑙𝑆 = Overall bus count in the network, 

            𝑝𝐸𝑋
𝑙𝑆  = The load that is existing on the 𝑙𝑆𝑡ℎ  bus, 

           𝑝𝐸𝑉𝐶𝑆
𝑙𝑆 = The charging station that is linked to the extra load caused by EVs at the 𝑙𝑆𝑡ℎ  

bus.  

 𝑝𝐸𝑉𝐶𝑆
𝑙𝑆  may also be improved as, 

 𝑝𝐸𝑉𝐶𝑆
𝑙𝑆 = (𝑛𝐸𝑉

𝑔2𝑣
× 𝑐𝐶ℎ𝑎𝑟) − (𝑛𝐸𝑉

𝑣2𝑔
× 𝑐𝐷𝐶ℎ), 

                           If 𝑙𝑆 ∈  charging stations position. 

       = 0, if 𝑙𝑆 ∉ charging stations position.                                                                           (4)                                         

Where, 𝑛𝐸𝑉
𝑔2𝑣

= The entire EVs count connected to the charging station in G2V. 

𝑛𝐸𝑉
𝑣2𝑔

= The entire EVs count connected to the charging station in V2G. 

𝑐𝐶ℎ𝑎𝑟= The charging rate for EVs. 

 𝑐𝐷𝐶ℎ = The discharging rate for EVs. 

On that specific bus, the EVCS will be installed as a link for the additional load for the 

charging stations. The number of bus serves as a significant determining factor for 

optimization in this work (the 𝑙𝑆 ∈ position of the charging station). 

As a result, the components of active and reactive power loss are differentiated from the 

overall apparent power loss.  

𝑝𝐿𝑜𝑠𝑠𝑙 = 𝑅𝑙 ∗
(𝑝𝑙

2+𝑞𝑙
2)

|𝑣𝑙2|
                                                                                                                                 (5) 

𝑞𝐿𝑜𝑠𝑠𝑙 = 𝑋𝑙 ∗
(𝑝𝑙

2+𝑞𝑙
2)

|𝑣𝑙2|
                                                                                                                               (6)  

Where, 𝑝𝐿𝑜𝑠𝑠𝑙  , 𝑞𝐿𝑜𝑠𝑠𝑙  represented the active and reactive power loss elements in 𝑙𝑡ℎ  

branch respectively.  𝑝𝑙
2, 𝑞𝑙

2 represents active and reactive power flows from 𝑙𝑡ℎ  bus. 

The entire active power loss, 𝑝𝐿𝑜𝑠𝑠 in the radial distribution network is calculated by, 

𝑝𝐿𝑜𝑠𝑠 = ∑ 𝑝𝐿𝑜𝑠𝑠
𝑙𝑛𝑙

𝑙=1                                                                                                                                        (7) 

Where, 𝑛𝑙 = The entire branch's number. 

2.2 Voltage Deviation Index (VDI) 

By using the voltage deviation index (VDI), the bus's voltage quality is evaluated. In 

order to provide a more regulated bus voltage profile along the RDN, bus VDI must be 

decreased. The suggested ideal EVCS and DG allocation uses bus VDI as an objective 

function [16]. 

𝑉𝐷𝐼 = ∑ (𝑉𝑙𝑉𝑟𝑒𝑓)2𝑁𝐵𝑢𝑠
𝑙=1                                                                                                                              

(8) 𝑉𝑙 = Bus voltage in the 𝑙𝑡ℎbranch. 

𝑉𝑟𝑒𝑓 = The reference voltage in the 𝑙𝑡ℎbranch. 

 𝑁𝐵𝑢𝑠 = the no. of buses in the distribution network. 
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      This is how, the objective function is represented,   

𝑚𝑖𝑛 (𝐹1) = 𝑚𝑖𝑛 [(𝑤 × 𝑝𝐿𝑜𝑠𝑠) + {(1 − 𝑤) × 𝑉𝐷𝐼}]                                                            (9) 

Where, 𝑤 is a weightage value. 

 

2.3 Constraints 

2.2.1 Constraints For Voltage Limit: 

The voltage through each node should always be kept within the permissible range at any 

given moment. 

𝑉𝑚𝑖𝑛 ≤ 𝑉𝑙𝑆 ≤ 𝑉𝑚𝑎𝑥, for 𝑙𝑆 = 1 to 𝑁𝑙𝑆                                                                 (10)                                                  

Where, 𝑉𝑚𝑖𝑛= The lowest voltage's limit. 

𝑉𝑚𝑎𝑥= The maximum voltage limit.  

𝑉𝑙𝑆= Bus voltage in the 𝑙𝑆𝑡ℎ bus. 

2.2.2 Constraints on Current Flowing Limit: 

The output of flowing current (𝐼𝑙) from each branch should be lower than its maximum 

rated capacity (𝐼𝑚𝑎𝑥), 

𝐼𝑙 ≤ 𝐼𝑚𝑎𝑥 , for 𝑙 = 1 to  𝑛𝑙                                                                                       (11)                                           

     Where,  𝐼𝑙= The flowing current through the 𝑙𝑡ℎ  branch. 

𝐼𝑚𝑎𝑥= Maximum allowable current flow limit.  

𝑛𝑙 = Number of overall branches. 

2.2.3  Constraints for Load Balancing: 

The substation's delivered power needs to be sufficient for the entire demand and the 

loss. 

𝑝𝑠𝑢𝑏𝑠𝑡 = ∑ 𝑝𝑙𝑆 + 𝑝𝐿𝑜𝑠𝑠
𝑁𝑙𝑆
𝑙𝑆=1                                                                                                    (12)  

     Where, 𝑝𝑠𝑢𝑏𝑠𝑡= the substation's power supply. 

𝑝𝑙𝑆 = Load on the 𝑙𝑆𝑡ℎ bus.     

𝑁𝑙𝑆 = The system's total number of buses. 

 𝑝𝐿𝑜𝑠𝑠= The overall active power loss 

2.2.4 Thermal Limit Constraints: 

The thermal limit across each branch should not reach the maximum permissible limit.  

  𝑆𝑙 <= 𝑆𝑙(max) , ∀𝑙                                                                                                                                         (13)                               

     Where,  𝑆𝑙 = The 𝑙𝑡ℎ branch’s apparent power. 

𝑆𝑙(max)= The 𝑙𝑡ℎ branch’s maximum apparent power limit. 
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2.2.5 DG Constraints: 

 The bus’s Active and reactive equality constraints are, 

 𝑝𝐷𝐺,𝑙 = 𝑝𝐿𝑜𝑠𝑠 + ∑ 𝑝𝐷,𝑙                                                                                                                          (14)      

 𝑞𝐷𝐺,𝑙 = 𝑞𝐿𝑜𝑠𝑠 + ∑ 𝑞𝐷,𝑙                                                                                                                   (15) 

Where, 𝑝𝐷𝐺,𝑙= The DG’s bus 𝑙 active power injection. 

             𝑞𝐷𝐺,𝑙  = The DG’s bus 𝑙 reactive power injection. 

             ∑ 𝑝𝐷,𝑙 = The overall active power at bus 𝑙. 

             ∑ 𝑞𝐷,𝑙 = The overall reactive power at bus 𝑙. 

2.2.5.1 DG Position:  

Bus 1 has been considered as the slack bus in IEEE 33 bus distributed system. The DG 

position should lie within acceptable bus limit. 

                   (𝐷𝐺)𝑖 ∈ (𝐴𝑟𝑒𝑎)𝑖                                                                                                               (16) 

 Where, (𝐷𝐺)𝑖 , (𝐴𝑟𝑒𝑎)𝑖 denotes the position of DG and area of 33 bus. 

2.2.5.2 Constraints of DG Capacity:  

In this work, 30% DG penetration has been estimated to satisfy the network's peak demand. 

    0 ≤ 𝑝𝐷𝐺,𝑙 ≤ 0.3 ∑ 𝑝𝐿𝑂𝐴𝐷(𝑖)𝑛
𝑖=1                                                                                                              (17) 

Where, 𝑝𝐿𝑂𝐴𝐷(𝑖) denotes the total active power of the network. 

3 Optimization Tool  

The Grey Wolf Optimizer (GWO), a new meta-heuristic method inspired by grey 

wolves (Canis lupus). The GWO algorithm imitates the natural leadership structure and 

hunting strategy of grey wolves [18]. 

     Whale Optimization Algorithm (WOA), is a unique meta-heuristic optimization algorithm 

inspired by nature that imitates the social behavior of humpback whales. The bubble-net 

searching strategy served as the basis for the algorithm [19]. 

     Dieu T.T. Do and Jaehong Lee proposed a modified symbiotic organisms search algorithm 

in 2017 [20]. Engineering design and numerical optimization problems are solved with the 

use of SOS, a novel, strong, and reliable metaheuristic technique. The symbiotic interaction 

techniques that organisms utilize to exist and spread through the environment are simulated 

by SOS. Mutualism, commensalism, and parasitism are the main three prevalent symbiotic 

interactions in the environment. Mutualism is a term used to describe a symbiotic relationship 

whereby two different species benefit from each other. Commensalism is a type of symbiotic 

interaction in which one species benefit while the other is unaffected. Parasitism is a 

symbiotic interaction in which one species benefit and the other is purposefully harmed [21]. 

The optimal position for EVCS was determined in this work using the SOS algorithm. 

Fig. 1 depicts the proposed flow chart for locating the appropriate location for DG and EVCS. 

In this paper, the search agent specifies the location of undefined branches where DG and 

EVCS will be linked. The objective function and the different constraints are computed using 

the backward forward sweep load flow method for distribution networks. The SOS 
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algorithm is being used to modify the position of the DG and EVCS. 

 

Fig. 1.  Flow chart for optimal positioning of DG and EVCS by implementing 

GWO/WOA/SOS optimization technique. 

4 Results and Discussion  

Fig.2. Area Splitting in IEEE 33 Bus RDN 

VDI and active power loss, as well as other power system parameters, have been 

calculated using IEEE 33 bus RDN data and the distribution network's backward forward 

sweep load flow algorithm [22]. In the G2V working mode, the charging rate is 19 kW [11] 
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and the discharging rate in V2G working mode is 8 kW [17] respectively. It is assumed in 

this article that 20% of EVs can function in V2G mode. To provide EVCS additional 

accessibility, Fig. 2 shows the distribution network separated into three sections. In this work, 

the active power loss and VDI as a multi-objective function were minimized when installing 

the EVCS into three distinct regions utilizing GWO, WOA and SOS optimization tools. By 

assuming the following three possibilities, the problem is instantly fixed: 15, 25, and 35 EVs 

are connected to the charging port at that time. In the worst-case situation, there can never be 

more than 35 EVs in the network at once. 

Table 1. Optimal Location of DG and EVCS Along with the Active Power Loss and VDI. 

Optimization 

Tool Applied 

No. of 

EVs 

Allocation Best Positions Active 
power 

loss in kW 

VDI (p.u) 

 

 

 

 

SOS 

 

15 

EVCS Location 2 21 33 213.32 0.1338 

DG Location 4 26 14 

DG Size (kW) 34.96 12.87 27.42 

 

25 

EVCS Location 19 22 30 217.34 0.1368 

DG Location 3 7 32 

DG Size (kW) 19.98 7.32 51.76 

 

35 

EVCS Location 19 21 33 225.86 0.1416 

DG Location 4 7 32 

DG Size (kW) 34.82 34.02 62.22 

 

 

 

 

GWO 

15 EVCS Location 2 21 33 213.32 0.1338 

DG Location 4 26 14 

DG Size (kW) 34.96 12.87 27.42 

25 EVCS Location 19 22 30 217.34 0.1368 

DG Location 3 7 32 

DG Size (kW) 19.98 7.32 51.76 

35 EVCS Location 19 21 33 225.86 0.1416 

DG Location 4 7 32 

DG Size (kW) 34.82 34.02 62.22 

 

 

 

 

WOA 

15 EVCS Location 2 21 33 213.32 0.1338 

DG Location 4 26 14 

DG Size (kW) 34.96 12.87 27.42 

25 EVCS Location 19 22 30 217.34 0.1368 

DG Location 3 7 32 

DG Size (kW) 19.98 7.32 51.76 

25 EVCS Location 19 21 33 225.86 0.1416 

DG Location 4 7 32 

DG Size (kW) 34.82 34.02 62.22 

 

The nominal loads are connected at different nodes in accordance with the IEEE 33 bus RDN. 

Installation of the EVCS takes place at the node that accommodates the increased demand 

provided by EV charging. Depending on the number of EVs and the rate of charging and 
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discharging, the load that has to be connected in V2G and G2V configurations ranges widely. 

For this work, an Intel Core i5 processor at 2.20 GHz and 8 GB of RAM is used, along with 

the programming language MATLAB R2019b, which is installed on the system. 

 

By using the GWO, WOA and SOS optimization approaches, table 1 displays the best 

positions for allocating DG and EVCS, active power loss, and VDI for various EV 

penetration levels. It has been observed that the optimal position of installing DG and EVCS 

has been identified and has been validated by using various optimization techniques. It has 

been ensured that active power loss and VDI has been minimized simultaneously for 

obtaining an efficient and reliable network for installing DG and EVCS. The obtained results 

have been validated for various EV penetration and using SOS optimization tool and 

compared with GWO and WOA optimization techniques. It has been observed that the 

position of attained location of EVCS and DG remains similar which is feasible from a 

practical perspective 

 
Fig. 3. Voltage Profile for Various EV Penetration 

 

 
Fig. 4. Current Profile for Various EV Penetration 

 

      Using the SOS tool, the voltage and current profile for the various EV penetration rates 

is shown in Fig. 3 and 4. It has been observed that despite an increase in the number of EVs, 

the voltage and current profile changes just minimally. 
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Fig. 5. Pareto Optimal Front for 15 EVs 

 
Fig. 6. Pareto Optimal Front for 25 EVs 

 
Fig. 7. Pareto Optimal Front for 35 EVs 
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      For different levels of EV penetration, Fig. 5-Fig. 7 shows the pareto optimal front for 

simultaneously minimizing active power loss and VDI using the SOS optimization approach. 

For decreasing active power loss or VDI, the multi-objective function appears to be much 

more practical than the single-objective function since it provides a compromised outcome. 

For different numbers of EV penetrations, the pareto optimal front for concurrent reduction 

of active power loss and VDI in the IEEE 33 bus distribution network displays smoother 

characteristics. 

5 Conclusion 

The shortage of EVCS is the biggest barrier for preventing the widespread adoption of 

EV. In this work, Using GWO, WOA, and SOS optimization methods, it has been 

demonstrated that the ideal location for placing DG and EVCS has been determined and 

evaluated. For the purpose of obtaining an effective and dependable network for the 

installation of DG and EVCS, it has been assured that active power loss and VDI have been 

reduced simultaneously. The obtained results have been verified for various EV penetrations, 

and the placement of the EVCS has remained consistent, which is realistic. The allocation of 

DG and EVCS have a substantial influence on the power system parameters of RDN. 

Incorporating the DG and EVCS in the designated positions of IEEE 33 bus RDN maintains 

a healthy current and voltage profile in the network. The installation of DG and EVCS in 

RDN while providing wider access to EVCS considering active power loss is minimized is 

much more sensible from practical stand point. 
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