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Abstract: This study investigated the application of Response Surface Methodology (RSM) for 

optimizing and predicting methane yield from oxidative pretreated Xyris capensis. Input process 

parameters of retention time, temperature, and pretreatment condition were considered, with methane 

yield as the response. The results show that all three process parameters selected significantly influence 

methane yield, and analysis of variance (ANOVA) indicates that the RSM model is significant for the 

study. A correlation coefficient (R2) of 0.9071 was recorded, which implies that the model has 91% 

prediction accuracy. Interactive influence of temperature and retention time, pretreatment and retention 

time, and pretreatment and temperature were significant to methane release. Optimum conditions for 

methane release from RSM model are 14 days retention time, 25 °C temperature, and pretreatment 

condition of 85% H2O2 and 15% H2SO4 with daily optimum methane yield of 32.65 mLCH4 /gVSadded. 

This study shows that RSM is suitable for methane yield optimization and prediction during the 

anaerobic digestion of oxidative pretreated lignocellulose substrates. 
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1 Introduction  

Renewable energy is clean energy generated from non-

depleted origins that can be replenished and lower 

greenhouse gases. Either directly or indirectly, 

renewable energy relies on the sun. Biomass, an 

example of renewable energy, stores energy from the 

sun to produce another form of energy. It is energy from 

living organisms like agricultural residues, wood, grass, 

manure, etc. Renewable energy in the form of biofuels 

can be generated from biomass through biological, 

chemical, and thermal waste-to-energy technologies 

[1,2]. Anaerobic digestion is a biological process that 

converts organic feedstocks into biogas during the 

activities of microorganisms and without oxygen. The 

process can release methane-rich biogas that can be used 

for heating, power, and electricity generation and can be 

injected into the grid after purification [3]. Renewable 

energy generation through anaerobic digestion is a 

bright technique due to the low initial investment cost 

and energy requirement [4].  

Lignocellulose feedstocks are second-generation 

materials that can be used to generate biogas and other 

biofuels. Attention has been shifted to these feedstocks 

due to their availability, and it does not compete with 

food supply and agricultural land. Lignocellulose 

feedstocks can be obtained from agriculture residues, 

forest wastes, grasses, livestock wastes, etc. [5,6]. It is 

made up of lignin, hemicellulose, and cellulose, and 

these compositions are intertwined with very strong 

bonds, making them recalcitrant [7]. This characteristic 

of lignocellulose feedstocks hinders the hydrolysis stage 

of anaerobic digestion with longer retention time and 

low biogas and methane yields. Therefore, there is a 

need to introduce a pretreatment technique to break 

down the lignin content that resists the microorganisms 

from accessing the cellulose that is digested to produce 

methane. Several pretreatments, such as 

physical/mechanical, chemical, thermal, biological, 

nanoparticle additives, and combined pretreatments, 

have been experimented with on lignocellulose 

materials and were reported to enhance methane yield 

and lower the retention period [7]. Oxidative 

pretreatment employs oxidizing agents like H2O2, FeCl3, 

and oxygen or air to disintegrate the lignin and 

hemicellulose portion of lignocellulose materials to 

improve the hydrolysis of organic contents during 

anaerobic digestion [8]. Oxidative pretreatment aims to 

disintegrate hemicelluloses partially and delignification 

of the feedstock [9].  

Biogas production process parameters have been 

identified to influence the methane yield significantly. 

The optimization of methane needs an accurate selection 

of these parameters to achieve the optimization target. 

Developing a suitable and reliable optimization model 

that can forecast and optimize methane yield accurately 

without going through the experimental process is 
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challenging due to its non-linearities. Identifying 

statistical models that can forecast the optimum 

parameters that can be replicated on an industrial scale 

would enable us to determine and understand the depth 

dynamic of the process by simple and general-

comparable data optimization [1]. Response Surface 

Methodology (RSM) statistical model combines 

statistical and mathematical methods, and it has been 

reported to be suitable for optimizing process and 

reactions that require experimental design. It has been 

experimented with in drug research [10], biodiesel 

synthesis [11], and biogas production [4]. Nevertheless, 

it is difficult to conclude that it applies to all 

optimization processes as reported that it is unsuitable 

for some optimization experiments [12]. Therefore, this 

study aims to statistically optimize the methane yield of 

Xyris capensis using response surface methodology and 

pretreatment technique. 

2 Materials and methods  
2.1 Substrate collection 

Xyris capensis grass was sourced locally, chopped into 

smaller sizes (4 – 8 mm), and kept in well-ventilated 

conditions for further use. Stabled inoculum from an 

existing anaerobic digester was collected and used for 

this study. Both feedstock and inoculum were analyzed 

in the laboratory for physicochemical properties 

following the Association of Official Analytical 

Chemists (AOAC) standard procedure [13]. The 

substrate and inoculum were stored in the laboratory at 

room temperature for the experimental setup. 

2.2 Pretreatment  

Oxidative pretreatment was carried out using Piranha 

solution, and the solution was prepared as reported by 

Shrivash et al. [14] with slight modification. 75 g of ice 

cube was put in a 500 mL beaker, and H2O2 and H2SO4 

were added, as shown in Table 1. The mixture was 

stirred continuously to form a homogenous solution. 

The chopped Xyris capensis was then soaked in the 

prepared solutions in a ratio of 1: 10 of solid to liquid. 

The beaker with its contents was then placed on a 

magnetic stirrer for two hours at 200 rpm set at 90 °C. 

After the treatment exposure time, 10% of NaOH was 

added to stop further oxidation of the substrate, and 

warm distilled water was added as an anti-solvent to 

prevent further reaction. The pretreated Xyris capensis 

was filtered and washed with water until a neutral pH of 

7 was achieved. The pretreated substrate was then dried 

in an oven set at 60 °C for 6 hours and stored in zip-lock 

bags for laboratory analysis and anaerobic digestion.  

 

 

Table 1. Oxidative pretreatment conditions of Xyris capensis 

Treatment H2O2 

concentration 

(%) 

H2SO4 

concentration 

(%) 

A 100 0 

B 95 5 

C 85 15 

D 75 25 

E Control  Control  

2.3 Anaerobic digestion 

The Biomethane potential of oxidative pretreated and 

untreated Xyris capensis was studied on a laboratory-

scale using Automatic Methane Potential Test System II 

(AMPTS II) at mesophilic temperature (37 ± 2 °C) [15]. 

500 ml reactor bottles were charged with 400 g of stable 

inoculum. Equation 1 was used to calculate the quantity 

of substrate added to each digester as prescribed by VDI 

4630 [15]. The mass of substrate added was determined 

using volatile solids (VS) of the substrate and inoculum 

(2: 1). The experiment was duplicated twice, and two 

digesters with only inoculum were run parallel. The gas 

released from the parallel digester was deducted from 

other digesters with both substrate and inoculum. 

AMPTS II software was supplied with the following 

information before the commencement of the 

experiment. Flush gas for carbon dioxide removal was 

maintained at 10%, stirring time was put at 60 sec and 

60 sec off time, and the mixer speed at 80%. Methane 

yield was predicted to be 60% [16], and a headspace of 

100 ml was maintained for all digesters. The anaerobic 

condition was set in the digester when nitrogen gas 

purged oxygen off the system before connecting the 

silicon pipes to the digester. Sodium hydroxide (3M 

NaOH) was used to remove the carbon oxide from the 

gas produced. Silicon pipes from the digesters were 

linked directly to the carbon dioxide removal unit that 

contains a 75 mL NaOH solution, and another silicon 

pipe was connected from the carbon dioxide removal 

unit to the third unit, where the volume of biomethane 

released was recorded. The process was stopped after 24 

days when it was observed that the daily gas yield was 

less than 1% of the total yield. 

𝑀𝑠 =   
𝑀𝑖𝐶𝑖

2𝐶𝑆

                                                                (1) 

Where: Ms = Mass of the substrate (g), Mi = Mass of 

inoculums (g), Cs = Concentration of substrate (%), Ci 

= Concentration of inoculum (%) [15]. 

2.  RSM parameters and analysis 44  

RSM was used to investigate the process parameters 

optimization, and central composite design (CCD) was 
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utilized to create experiment runs. Design Expert 13.0 

was used, and retention time (A), temperature (B), and 

pretreatment (C) were the process parameters 

considered. Using the results from some initial 

experiments, the independent variables were set 

between -1 and +1 across all levels. The total number of 

experimental runs for the three factors (F) is 30, as 

determined by equation 2, and the response is presented 

in equation 3. Analysis of variance (ANOVA) was used 

to forecast a second-order polynomial regression and 

results [17]. 

𝐹 =  2𝑏 + 2𝑏 + 6                                                        (2) 

Where b is the factor’s number (b = 4), and 6 is the 

constant value. 

𝑋 =  𝛾𝑜 + 𝜖𝛾𝑖𝑖𝑍1 + γ𝑜 +  𝜖γ𝑖𝑗 𝑍𝑖𝑍𝑗                           (3) 

Where: X = the measured response, 𝛾𝑜  = the intercept 

term, 𝛾𝑖𝑖 = quadratic coefficient, 

γ𝑖𝑗  = interaction coefficient, 𝑍𝑖  and 𝑍𝑗  are the 

coded independent variables. 

3 Results and Discussion 

The experimental and RSM predicted methane yield for 

30 runs is presented in Table 2. It can be observed from 

the table that all the process parameters selected had a 

significant influence on methane yield. For example, the 

methane yield was not the same when the temperature 

and pretreatment method was the same, but variation in 

retention time (runs 6 & 9, and 21 & 24). Variation in 

methane released was also observed when temperature 

varied, but retention time and pretreatment were the 

same (runs 1 & 27). Likewise, pretreatment's influence 

was noticed at the same temperature and retention time 

(runs 4 & 7). This result agreed with the previous studies 

that indicated that temperature, retention time, and 

pretreatment techniques significantly influence the 

methane released from lignocellulose feedstocks [16].

Table 2. Observed and RSM predicted methane yield. 

Run  A  B  C  Methane Yield (mL CH4/ 

g VSadded) 

    Observed  RSM 

Predicted  

1 2 29 C  14.21 13.28 

2 10 28 D 15.88 14.770 

3 9 22 A 18.82 18.31 

4 13 24 C 8.45 8.13 

5 2 23 B 32.65 30.18 

6 7 24 C 12.48 12.32 

7 13 24 D 8.58 8.36 

8 15 24 A 6.47 6.46 

9 9 26 E 12.03 11.48 

10 7 20 B 30.23 31.25 

11 7 23 E 12.66 12.51 

12 26 21 A 6.18 6.19 

13 4 24 C 13.33 15.57 

14 16 26 C 10.22 9.22 

15 5 26 D 11.73 11.85 

16 9 28 D 13.29 15.13 

17 6 29 B 16.85 19.60 

18 8 26 A 19.12 16.76 

19 5 24 C 14.93 14.43 

20 15 23 E 7.12 7.96 

21 8 28 B 20.81 18.05 

22 11 31 D 10.84 11.00 

23 16 31 A 7.35 7.30 

24 10 28 B 21.60 17.46 

25 12 27 B 7.38 14.35 

26 8 22 E 13.99 13.51 

27 2 24 C 13.71 14.36 

28 19 27 C 5.58 5.26 

29 10 25 C 12.09 11.02 

30 4 25 A 20.29 22.87 

3.1 Interactive relationship of process 
variables on methane yield 

The ANOVA results for methane production from the 

model suggested quadratic equation for all the responses 

are presented in Table 3. It can be observed that the 

model is highly significant because of the P-value of 

0.0057. The model F-value of 5.14 indicate significance, 

and there is a tendency of just 0.57% that an F-value this 

big could be experienced because of noise. The value of 

P below 0.0500 shows the significance of the model 

terms, and it was discovered that no model term is 

significant (P < 0.05) in this case [18]. P-values above 

0.100 implies that the model terms are insignificant, and 

in this case, reduction of the model may enhance the 

model. The coefficient of correlation (R2) determined 

the model's accuracy, and the R2 value of 0.9071 (91%) 

was observed from this model. This shows that the 

model provides an accuracy of 91% in predicting the 

methane released from Xyris capensis pretreated with 

oxidizing agents. This value is lower than what some 

authors reported [4] but higher than what was observed 

by other authors in related studies [19]. R2 within the 

range of 0.75 and 1 has been adjudged to be an excellent 

predictive ability of a model [12], this shows that the 

result from this study is satisfactory. Reasonable 

agreement exists between the predicted R2 and adjusted 

R2 because the variation between the two values is less 

than 0.2. Adequate precision defines the signal-to-noise 

ratio, which measures the prediction range and its 

associated errors. For signal-to-noise ratio, a ratio higher 

than 4 is recommended [20], and 9.3628 was observed 
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in this investigation which shows a satisfactory signal. 

Therefore, this model can be used to boycott the design 

space. The final regression model of ANOVA can be 

presented with second-order polynomial equation 4 that 

can be used to forecast the methane yield. Equation 4 

can forecast the response for the selected factor’s level, 

-1 and +1 coded levels for low and high levels, 

respectively, by default. The relative influence can be 

ascertained with this equation when the coefficient of 

the selected factors is related. 

𝑀𝑒𝑡ℎ𝑎𝑛𝑒

= 8.97 − 6.26𝐴 + 11.30𝐵 + 0.5302𝐶 − 6.30𝐴𝐵

+ 0.8964𝐴𝐶 −  6.20𝐵𝐶 − 0.2352𝐴2 −  2.53𝐵2

+ 0.0617𝐶2                                                               ( 4) 

Table 3. ANOVA for methane generated from 

oxidative pretreated Xyris capensis. 

Source  Sum 

of 

squa

res  

d

f  

Mea

n 

Squa

re  

F-

val

ue  

P-

val

ue 

 

Model  1127

.76 

1

9 

59.36 5.14 0.00

57 

Signifi

cant  

A – 

Time  

7.22 1 7.22 0.62

52 

0.44

57 

 

B – 

Temp. 

12.1

3  

1  12.13  1.05 0.32

97 

 

C – 

pretreat

ment  

0.07

79 

1 0.077

9 

0.00

67 

0.93

62 

 

AB 1.08 1 1.08 0.09

36 

0.76

59 

 

AC 0.14

90 

1 0.149

0 

0.01

29 

0.91

18 

 

BC 3.35 1 3.35 0.29

00 

0.60

20 

 

A2 0.00

35 

1 0.003

5 

0.00

03 

0.98

65 

 

B2  2.12 1 2.12 0.18

37 

0.67

73 

 

C2  0.00

16 

1 0.001

6 

0.00

01 

0.99

10 

 

Residua

l  

115.

56 

1

0 

11.56    

Cor. 

Total 

1243

.31 

2

9 

    

Std. 

Dev. 

3.40  R2  0.90

71 

  

Mean  13.9

6 

 Adjus

ted 

R2 

0.73

05 

  

C.V. % 24.3

5 

 Predi

cted 

R2 

0.92

30 

  

PRESS 2390

.90 

 Adeq. 

Preci

sion 

9.36

28 

  

3.2 Analysis of methane yield residual plot. 

Fig. 1 presents the perturbation plot of the methane 

yield, and this shows the relationship of all the input 

variables at the center of the response, methane yield. 

The impact of individually selected process parameters 

from the identified reference point was also ascertained 

from the perturbation plot, while other parameters were 

held constant. In this investigation, the reference point 

was selected in the middle of the design space, 

representing the zero-coded level for each feature. In 

retention time (A), the methane yield kept increasing 

until day 14, when the yield started declining. This could 

be a result of the reduced available feedstock for the 

consumption of methanogenic bacteria and declining 

methane release. This agrees with what was earlier 

observed in previous study that at a particular point of 

the digestion process, the methane yield will begin to 

decline due to insufficient feedstock for microbial 

activities [18]. Temperature (B) can be observed to 

significantly influence the methane yield, as shown in 

Fig. 1. It can be observed that when the temperature 

begins to rise, the quantity of methane released keeps 

increasing linearly until a point when a further increase 

in temperature results in a decline in methane yield. This 

can be linked to the strength of methanogenic bacteria to 

thrive well when the temperature is around 25 °C. 

Therefore, a temperature rise beyond this level will 

reduce the methane yield. At the point indicated in this 

Figure, the methanogenic bacteria are saturated, and a 

rise in temperature will be harmful, which will lower 

their activities. This result agrees with reports from 

previous studies on the reaction of methanogenic 

bacteria to temperature changes [12]. The effect of 

oxidative treatment (C) shows a very slight influence on 

methane produced. It can be inferred that methane 

released was enhanced with 85% H2O2 and 15% H2SO4. 

This indicates that H2SO4 less than 15% was unable to 

remove/redistribute the lignin content of the feedstock, 

and H2SO4 above 15% will produce inhibitory 

compounds or there will be a loss of some hemicellulose 

and cellulose portions. This result corroborates 

previously reported that pretreatment techniques can 

improve the methane yield if the appropriate conditions 

are selected [19]. 
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Fig. 1: Perturbation analysis plot of anaerobic 

digestion of oxidative pretreated Xyris capensis. 

3.3 Response surface plots 

To investigate the synergetic effect between the selected 

input variables and methane released, three-dimensional 

(3D) plots were produced with the model. Fig. 2 presents 

the 3D plot where one parameter is kept constant at the 

optimum condition, and the other two parameters are 

varied within the experimental range. Fig. 2A presents 

the interactive relationship between temperature and 

retention time on methane yield while the other 

parameter (pretreatment condition) was constant. It can 

be noticed that the methane production started to 

increase at the initial stage and then started to decline 

with further increases in temperature and time. 

Temperature and retention time are two important 

process parameters for methane generation. The 

temperature of the system significantly influences the 

performance of the methanogenic bacteria, and there is 

a particular range that further increases this parameter 

and makes the bacteria uncomfortable and less 

productive. It has been reported that there are three 

conditions for methane production which are 

psychrophilic (around 25 °C), mesophilic (35 – 37 °C), 

and thermophilic (53 – 60 °C) [21]. An increase in 

retention time is inversely proportional to the feedstock 

availability in the digester. With time the bacteria could 

be noticed to have less feedstock to feed on, reducing 

the methane yield as shown in Fig. 2A. Fig. 2B 

illustrated the interactive relationship between 

pretreatment and retention time while the temperature 

was kept constant. It could be noticed that pretreatment 

has a marginal influence on the methane released 

compared to retention time. This could be traced to the 

linear increase in the percentage of H2SO4 used during 

the pretreatment process. The optimum methane yield 

was reported when 85% H2SO4 was combined with 15% 

H2SO4 (treatment C). This can be traced to the strength 

of H2O2 to have less influence on the lignin content of 

the substrate until the percentage of H2SO4 was 

increased to 15%. After 15% H2SO4, there is a tendency 

there will be the release inhibitory compounds, which 

will hinder the release of methane, especially when 75% 

H2O2 is combined with 25% H2SO4. This result 

corroborated what was earlier noticed that pretreatment 

above a particular condition will result in methane 

reduction [7].  

Fig. 2C showed the interactive effects of 

pretreatment and temperature while the retention time 

was constant. It could be noticed from this plot these two 

parameters have the least interactive effect. 

Pretreatments enhance the accessibility of the microbes, 

and when the temperature of the process favors the 

activities of the methanogenic bacteria, it can result in a 

high biodegradability rate. This degradability may 

improve the hydrolysis stage, leading to 

overaccumulation of the process's volatile fatty acids 

(VFAs) and altering the process's pH. 

Overaccumulation of VFAs will influence the pH and 

make the process harmful to methanogenic bacteria that 

are sensitive to changes in pH. It has been observed that 

methanogenic bacteria thrive well at neutral pH (6 – 8) 

during anaerobic digestion, and values outside this range 

will affect the methane yield negatively [22]. Both the 

pretreatment can alter the pH of the process through a 

hydrolysis process that can under or over-produce the 

VFAs. This interactive effect on methane yield was 

noticed in Fig. 2C, and it could be inferred that the 

hydrolysis stage of the process was satisfactory.  
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(B) 

 

(C) 

Fig. 2. 3D surface plot for (A) temperature and time, (B) 

pretreatment and time, and pretreatment and 

temperature 

3.  Desirability analysis for optimization 4

The RSM model can be employed for single or 

multi-objective optimization by applying desirability 

analysis, an important tool for optimization. Higher 

desirability is achieved when the parameters are set such 

that the desirability is closer to 1. The values around 1 

have been judged to be the best conditions, and the co-

occurrent actual function is a geometric means of all 

outputs. For this study, the maximum process 

parameters were set with the aim of maximizing the 

methane yield. Fig. 3A shows the ramp plot presenting 

the optimum input process parameters and the 

forecasted methane yield. It can be observed that it 

presents an approximate retention time and temperature 

of 15 days and 25 °C, with treatment C (85% H2O2 and 

15% H2SO4) to produce an optimum daily methane yield 

of 32.65.37 mL CH4/ gVSadded. The desirability plot of 

the optimization for the objective function is illustrated 

in Fig. 3B. The desirability is an objective function that 

is between zero (0) out of the boundaries to one (1) at 

the goal [17]. The maximum desirability function was 

located within the numerical optimization. The 

desirability function relies on the closeness of the lower 

and higher limits set relative to the real optimum 

conditions. From this study, it can be observed that the 

desirability value is 1, which is the best desirability 

performance. Therefore, the optimum condition 

recorded from this investigation can be used to set up 

another experiment for further verification. 

 

Fig. 3A. Ramp plot for desirability analysis. 

                                    

 

(B) 

Fig. 3B. Bar chart for desirability analysis 

4 Conclusion  

This study has shown that retention time, temperature, 

and oxidative pretreatment conditions significantly 

influenced the methane yield of Xyris capensis. The 

interactive impacts of retention time and temperature, 

pretreatment and retention time, and pretreatment and 

temperature were observed to affect methane yield 

significantly. The RSM model coefficient of correlation 

(R2) value of 0.9071 was recorded, showing a valuable 

model for predicting and optimizing methane yield from 
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the statistical and mathematical evolution in anaerobic 

digestion of oxidative pretreated feedstocks. The 

optimum conditions for methane yield from RSM were 

14 days retention time, 25 °C temperature, and 85% 

H2O2 and 15% H2SO4 treatment conditions with a 

response methane value of 32.65 mL CH4 /g VSadded. 

This model can be applied commercially to optimize the 

methane yield of pretreated lignocellulose feedstocks to 

save time and cost. 
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