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Abstract. Wind power is a key pillar in efforts to decarbonise energy production. However, variability in 
wind speed and resultant wind turbine power generation poses a challenge for power grid integration. Digital 
Twin (DT) technology provides intelligent service systems, combining real-time monitoring, predictive 
capabilities and communication technologies. Current DT research for wind turbine power generation has 
focused on providing wind speed and power generation predictions reliant on Supervisory Control and Data 
Acquisition (SCADA) sensors, with predictions often limited to the timeframe of datasets. This research looks 
to expand on this, utilising a novel framework for an intelligent DT system powered by k-Nearest Neighbour 
(kNN) regression models to upscale live wind speed forecasts to higher wind turbine hub-height and then 
forecast power generation. As there is no live link to a wind turbine, the framework is referred to as a 
“Simulated Digital Twin” (SimTwin). 2019-2020 SCADA and wind speed data are used to evaluate this, 
demonstrating that the method provides suitable predictions. Furthermore, full deployment of the SimTwin 
framework is demonstrated using live wind speed forecasts. This may prove useful for operators by reducing 
reliance on SCADA systems and provides a research and development tool where live data is limited. 

1 Introduction  

Wind power is of particular interest in efforts to reduce 
greenhouse gas emissions [1] given its technological 
readiness, relatively low environmental footprint, and 
abundant availability [2]. Electricity is generated via the 
conversion of kinetic energy contained within the wind, 
governed by the wind power equation [3]: 

                          P=0.5CPρAV
3                                (1) 

Where P is power generated, CP  is a wind turbine's 
power coefficient, ρ is air density, A the rotor wind-swept 
area, and V is wind speed. 

Given the fluctuating nature of the wind [4], wind 
turbine power output can be highly variable. This 
variability and the resultant difficulty in forecasting future 
power generation pose several challenges in power grid 
integration whilst ensuring stability [5]. This has led to a 
number of proposed solutions including electrical 
interconnectors [6], energy storage systems [7] and 
improved demand prediction [8]. 

Another potential mitigating measure is predicting 
wind turbine power generation. This allows better wind 
farm [9] and grid network management, reducing the need 
for generation reserves [5], as well as enabling other 
solutions such hydrogen energy storage [10]. Given that 
power generation is dependent on the wind speed cubed, 
this is frequently seen as the most important, and therefore 

the most used, input parameter for calculating power 
generation [11]. Manufacture power curves provide one 
method of doing so, detailing anticipated power output for 
a given wind speed. However, these can be overly 
optimistic and are often based on ideal conditions [12]. 

Supervisory Control Data Acquisition (SCADA) is 
commonly used in wind energy [13], providing wind 
turbines, wind farms, and associated equipment the ability 
to report their operational status [14]. Solutions using 
SCADA have become increasingly popular in fault 
diagnosis and prediction in wind turbines [15, 16, 17]. 
SCADA often details power output, wind speed, and other 
associated metrics, allowing its use for power generation 
predictions. 

SCADA data is typically recorded at 10-minute 
intervals and provides a number of potentially useful 
measurements including wind speed, wind direction, 
power generation, voltages and component temperatures 
[18] making it ideal for data-driven methods utilising 
machine learning. These have the benefit of not requiring 
domain knowledge, with the potential for model 
improvement over time [19]. Additionally, the use of 
large datasets allows many different aspects to be 
considered [20], providing a good way to discover 
complex relations between data. However, it may be 
difficult to predict extreme conditions due to limitations 
in observations and whilst correlation may be determined, 
this will not give causality for what occurs [19]. 
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Given the availability of SCADA datasets, 
numerous publications have undertaken wind turbine 
power generation-related research making use of this 
resource. Lin et al. [21] utilised isolation forest and deep 
learning techniques alongside high-frequency SCADA 
data to derive an improved technique for outlier detection, 
improving the accuracy of power generation predictions. 
Delago and Fahim [22] devised a Long Short-Term 
Memory (LSTM) powered data analysis framework, 
capable of predicting and visualising SCADA data and 
associated power generation prediction.  

An important factor in the prediction of energy 
generation from a wind turbine is knowledge of forecasted 
wind speed, with a number of machine learning 
techniques also at the forefront of this. Lv and Wang [23] 
utilised deep learning within a newly proposed combined 
model to forecast wind speed which followed a 
“decomposition-optimisation-forecasting” principle. Hur 
[24] developed a 2-stage method for short-term wind 
speed prediction utilising an extended Kalman filter for 
estimation, with a combination of extrapolation and a 
double-layer perceptron (DLP) feedforward neural 
network for prediction. 

Whilst methods such as those outlined above have 
seen successful academic implementation, it has been 
noted that these can often be overly complicated [25] 
increasing the difficulty of real-world deployment and 
use. As such, this has inspired research using simpler 
methods of wind speed and power generation. k-nearest 
neighbour (kNN) methods have been shown to be 
successful, producing robust wind speed and power 
generation predictions [9, 25], with results achievable that 
are comparable to more intensive methods [26].  

A wide range of definitions as to what constitutes a 
DT have arisen, spurring attempts to consolidate 
definitions and better specify what constitutes a DT [27, 
28, 29]. These suggest that at its most basic form, a DT 
consists of a physical asset, a virtual model of the asset, 
and a bidirectional link between them. This link is often 
considered “live”, providing real-time updates to the 
model, as well as enabling changes to the asset as a result 
of changes in the model. These changes vary from direct 
actions undertaken by the model to indirect actions 
resulting from operator decisions.  

DTs provide increased integration between physical 
and virtual spaces by combining DTs with sensors, 
machine learning and Internet of Things (IoT)-based 
technologies [30]. DT technology offers several benefits 
including remote monitoring and operations from 
anywhere at any time [31], access to real-time monitoring 
data useful for decision-making [28], and the provision of 
continuously updating predictions of the future state of an 
asset [27]. These allow for improved decision-making and 
planning [27], optimisation of activities [32] and 
automation [31].  

The use of DTs in the wind energy sector has seen 
increasing popularity. Numerous frameworks have been 
proposed, particularly for operations and maintenance 
purposes, for both onshore and offshore wind turbines 
[33, 34, 35]. 

However, there has been limited research regarding 
power generation-focused DTs. Fahim et al. [9] proposed 

a 5G DT platform powered by Microsoft Azure 
infrastructure. This looked to provide a framework for 
real-time monitoring and prediction of power generation, 
claiming to be the first to do so. This was tested utilising 
SCADA data for a turbine located at an onshore wind 
farm in the Yalova region of Turkey. Machine learning, 
in the form of a deep learning Temporal Convolution 
Network (TCN) and non-parametric k-nearest neighbour 
(kNN) regression, were also used to predict wind speed 
and power generation respectively.  

Fahim et al. [9] were able to provide wind speed and 
power generation predictions rivalling other machine 
learning techniques. However, there was a lack of 
explanation as to how a DT would be deployed, either in 
the field or during testing, and power generation 
predictions were limited to 2018 (the extent of the 
SCADA dataset available). Additionally, the use of 
machine learning did not appear fully integrated with the 
DT. Rather the results presented appeared to utilise the 
historical SCADA dataset but did not provide evidence of 
being used in the context of the DT framework proposed. 

Kim et al. [36] proposed a physics-based DT to 
overcome the reliance on historical SCADA data for 
model training. The approach provided promising results 
for a test floating wind turbine, though focused on “live” 

updates on power generation as opposed to longer-term 
predictions and requires continuous sensor readings in 
order to provide predictions. Additionally, the proposed 
physics-based approach requires a thorough 
understanding of the wind turbine and local environment 
in question, with a complete change in model required 
depending on wind turbine model and location.  

As such, this research looks to contribute a DT with 
live power generation forecast capabilities, as opposed to 
being restricted to the timeframe of a given dataset and 
SCADA availability. This is achieved via the 
development of a machine learning model to predict wind 
turbine hub-height wind speeds based on live weather 
forecast data provided via an Application Programme 
Interface (API). Predicted hub-height wind speed is then 
used with a machine learning power generation prediction 
model to provide a power generation forecast. By 
incorporating this into a fully-functioning DT framework, 
a fully realised, deployable, power generation forecasting 
DT is delivered, capable of providing continuously 
updating live predictions for a wind turbine.  

The proposed DT does not maintain a direct link to 
a wind turbine as might be expected from DT definitions 
highlighted, instead using live weather forecast data. It is 
considered that the DT proposed offers a simulation of the 
anticipated live and future state of the wind turbine in 
question and as such, the proposed framework and its 
deployment are referred to as a “Simulated Twin” 

(SimTwin) for the remainder of the paper. 

2 Methodology  

2.1. Data  

Wind speed and power generation data were derived from 
historical SCADA data [37] for a wind turbine at 
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Kelmarsh Wind Farm near Haselbach, Northamptonshire 
comprising 6 wind turbines. Table 1 provides wind 
turbine data details. Historical wind speed forecasts for 
the 2-year 2019-2020 period and live wind speed forecasts 
were also used, sourced from OpenWeather [38]. 

Table 1. Wind turbine data overview [37] 

Estimated location 

52°24'2.30"N (latitude), 

0°56'49.38"W (longitude) 

Rated power 

generation 
2.05 Mega Watt (MW) 

Hub-Height 78.5m 

Turbine type Senvion MM92 

Start/End of dataset  01/01/2019 – 31/12/2020 

SCADA frequency 10-Minutes 

2.2. Predictive models 

kNN regression is a non-parametric pattern recognition 
method [39]  that has seen popularity due to its successful 
use for time series forecasting whilst remaining relatively 
simple [40], with the technique seeing use for forecasting 
both wind speed and wind turbine power generation [41, 
42]. kNN utilises the average of nearby observations to 
provide an estimated value [43] and distance is used to 
decide if observations are considered nearby, given by k 
[44]. An optimum k value is imperative. Smaller values 
can lead to over-fitting, with greater values potentially 
resulting in worse performance [43].  
 

kNN regression is considered a suitable initial 
method for the development of the predictive models 
developed. Time-series SCADA and wind speed datasets 
were used to develop and implement the predictive 
capabilities of the SimTwin, with kNN highly compatible 
with time-series data. Additionally, the simple setup and 
relatively quick calculation time make it useful for 
continuous live updates. As previously highlighted, kNN-
based research has produced robust power generation and 
wind speed prediction results [25, 9]. Taking into 
consideration the low computational and user 
requirements, kNN-based methods have demonstrated 
results comparable to more intensive methods, such as 
Long Short-Term Memory (LSTM), Support Vector 
Regression (SVR) and Bagging Regression (BR) [Mehr, 
2021]. 

kNN regression was undertaken utilising a 
Minkowski distance measurement, given by [45]: 

   D=(∑ (|ui-vi|)
p)

1

p                             (2) 
Where D is Minkowski distance, u is input array, v 

is output array and p is the order of the norm of the 
difference ||u-v||

p
 [45]. 

 

The use of kNN regression to predict hub-height 
wind speed ( PWHUB ) from lower level wind speed 
( WLOW ) and predicted power generation ( PG ) from 
predicted hub-height wind speed is given by the following 
functions respectively: 

                         F(WLOW)→PWHUB                        (3) 

                           F(PWHUB)→PG                           (4) 

Wind speed prediction results have also been 
compared to alternative methods to kNN regression 
considered appropriate for wind speed forecasting. These 
have been chosen for their ability to provide relatively 
quick updates as would be required by the SimTwin to 
give continuously updating results. The Wind Speed 
Power Law (WSPL) is a physical law that can be used to 
estimate upscaled wind speeds utilising a reference height 
with a known wind speed given by the equation [46]: 
                          Uh=Ug(

Zh

Zg
)
α

                               (5) 

Where Uh  is target wind speed at height Zh , Ug  is 
known wind speed at height Zg  and α is the power law 
exponent. A value of 0.143 is typically adopted for α 
under neutral stability conditions.  

Decision Tree Regression (DTR) has also been 
used, which breaks data into small sub-groups [9]. 
Extreme Gradient Boosting (XGBoost) regression is a 
gradient-boosted decision tree, which combines weaker 
models, providing a unified stronger model [47]. 

2.3. SimTwin framework 

Fig. 1 highlights the high-level architecture used to 
implement the power generation forecasting SimTwin. 

 

Fig. 1. High-level SimTwin framework overview 
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2.3.1 Hub-Height wind speed prediction 

Power generation forecasting requires the prediction 
of future wind speed, necessitating the use of weather 
forecasting services. Wind speed predictions for the wind 
turbine location were sourced from OpenWeather’s One 
Call API 3.0 [48]. This provides hourly forecasts for a 48-
hour period, including wind speed. However, as this is 
given at a different altitude than the hub-height of the 
wind turbine this needed to be converted.  

A hub-height wind speed prediction model was 
derived using hub-height wind speed from the SCADA 
dataset and historical wind speed data sourced from 
OpenWeather [49] for the same timeframe (see equation 
3). Historical lower-level wind speed data from 
OpenWeather is given for hourly periods and as such the 
10-minute SCADA dataset was averaged to give an 
hourly value. Historic wind speed data was used as an 
input to kNN regression with the higher hub-height wind 
speed as the desired target. The kNN regressor looks to 
predict the anticipated hub-height wind speed for a given 
low-level wind speed by utilising the average of nearby 
wind speeds for a given point, as identified by k. Grid 
search was used to calculate the optimal k value for the 
model, with values between 1 and 100 trialled. In doing 
so, a kNN model was derived capable of taking lower-
height wind speed and upscaling it to hub-height.  

Live weather forecasts from the One Call API 3.0 
were accessed using an API call to the OpenWeather One 
Call API 3.0 web address. Upon calling, 48-hour, hourly, 
wind speed dataset is provided in JSON format. This 
dataset is then inputted into the kNN wind speed 
upscaling model and anticipated correlating hub-height 
wind speed generated, providing a 48-hour prediction of 
hub-height wind speeds. This was undertaken at frequent 
repeating periods, providing continuous hub-height wind 
speed predictions based on the latest weather forecast. 

2.3.2 Power generation forecast 

Wind speed at hub-height and actual power generation 
from the SCADA dataset was used to train a kNN 
regression model capable of predicting power generation 
for a given hub-height wind speed (see equation 4). Data 
was averaged so to give an hourly value, reflecting the 
hourly values used for hub-height wind speed prediction 
and power generation forecasting. Grid search was also 
used, with values between 1 and 100 trialled. 

The 48-hour hub-height wind speed predictions 
were used in conjunction with the power generation 
prediction model, giving a 48-hour power generation 
forecast for the wind turbine. This was set to occur at 
frequently repeating periods, providing continuously 
updated power generation forecasts.  

2.3.3 Exportation to Azure IoT Hub 

The hub-height wind speed and power generation 
forecast are converted to JSON (“UTF-8” encoding and 
content type “application/json”) and exported to Azure 
IoT Hub. This is then continuously updated upon 
receiving power forecast data.  

2.3.4 Azure Digital Twin model display 

Azure Digital Twin requires models to be defined using 
Digital Twin Definition Language (DTDL). This enables 
the establishment of relationships to allow for grouping of 
different components of a DT, allowing a better 
understanding of how these may interact with each other 
[50]. In this case, official documentation [50,51] has been 
used to generate a simple wind farm model comprising 3 
wind turbines, one of which is used to represent the wind 
turbine tested. A 3D model [52] has also been imported 
for added visualisation. 

An Azure Function, adopted from official 
documentation [53], decodes and sends relevant data from 
IoT Hub to Azure Digital Twin which is then displayed. 
The Azure Function continuously sends relevant data 
upon the arrival of new data to IoT Hub, allowing the DT 
model to display the most recent hub-height wind speed 
and power generation forecasts. Fig. 2 shows the wind 
turbine in Azure Digital Twin graph layout and the 3D 
wind turbine model. T1 refers to the wind turbine tested. 
It is noted that this is not intended to reflect the makeup 
of Kelmarsh wind farm but rather act as a general 
representation.  

 

Fig. 2. Azure Digital Twin graph and 3D model overview 

2.4. Model performance metrics 

Root Mean Square Error (RMSE) was used to measure 
model performance, allowing comparisons with similar 
research. This considered a suitable performance 
evaluation metric for wind power as it assigns additional 
weight between large differences between actual and 
predicted values compared to smaller differences [54]. 
RMSE was calculated so to give the difference between 
predicted and actual values for wind speed and power 
generation. A lower RMSE value is considered better and 
is given by the equation [55]: 

                      RMSE=√
1

n
∑ (ei-e̅)

2n
i=1                         (6) 

Where ei is an actual value and e̅ is a predicted value. 

2.5. Power forecast SimTwin testing parameters 

All tests undertaken are highlighted in Table 2. To 
test the deployment of the SimTwin framework, 12 
months of power generation and wind speed SCADA 
data, as well as 12 months of historical wind speed 
forecasts were used to generate the power generation 
prediction model and hub-height wind speed prediction 
model. A wind speed forecast for the future 48-hour 
period of 16:00 on 21/06/2023 to 15:00 on 23/06/2023 
was sourced from One Call API 3.0, upscaled to hub-
height, and fed into the power generation prediction 
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model, thus giving a power generation forecast for the 
wind turbine during this period.  

Table 2. Model testing periods 

Test Training period Test period 

Q1 2019 predictions 
01/01/2019 – 

31/03/2019 

01/04/2019 – 

07/04/2019 

Q2 2019 predictions 
01/04/2019 – 

30/06/2019 

01/07/2019 – 

07/07/2019 

Q3 2019 predictions 
01/07/2019 – 

30/09/2019 

01/10/2019 – 

07/10/2019 

Q4 2019 predictions 
01/10/2019 – 

24/12/2019 

25/12/2019 – 

31/12/2019 

Q1 2020 predictions 
01/01/2019 – 

31/03/2019 

01/04/2020 – 

07/04/2020 

Q2 2020 predictions 
01/04/2019 – 

30/06/2019 

01/07/2020 – 

07/07/2020 

Q3 2020 predictions 
01/07/2019 – 

30/09/2019 

01/10/2020 – 

07/10/2020 

Q4 2020 predictions 
01/10/2019 – 

24/12/2019 

25/12/2020 – 

31/12/2020 

Future predictions 2019 (all) 
21/06/2023 – 

23/06/2023 

 
Given that no actual wind turbine data is available 

for this period, the validity of the hub-height wind speed 
prediction and power generation prediction kNN models 
was calculated by producing alternative models. These are 
capable of making predictions during the SCADA dataset 
timeframe, allowing comparisons with actual output 
during this period. This was achieved by using historical 
OpenWeather wind speed data for both training the hub-
height wind speed prediction model and for calculating 
power generation. Model training was undertaken using 
quarterly data, with the following week used to test the 
models. Q4 2019/2020 data was reduced by 1 week to 
allow a test period within the 2020 timeframe of the 
SCADA dataset.  

3 Results 

Results are split into 3 sections; The first section provides 
2019 weekly results for the hub-height wind speed 
predictions based on quarterly 2019 training data, with the 
actual SCADA-derived hub-height wind speed for the 
same period provided for comparison. The kNN 
regression method adopted is also compared to WSPL, 
DTR and XGBoost-based approaches. kNN regression-
derived weekly results for 2020 based on quarterly 2019 
data are also provided.  

The second section highlights the 2019 and 2020 
weekly power generation forecast results using the kNN 
regression-derived predicted hub-height wind speeds and 
actual SCADA-derived hub-height wind speeds as inputs. 

These results have been presented alongside SCADA-
derived wind turbine power generation for comparison.  

The third demonstrates the deployment of the 
SimTwin for the future period of 16:00 on 21/06/2023 to 
15:00 on 23/06/2023. 

3.1. Quarterly hub-height wind speed results 

Table 3 outlines measured performance in the form of 

RMSE for the 2019 test periods for each quarter, 

performed for the range of methods considered to be 

suitable for wind speed prediction. The k value used for 

kNN-based predictions is also presented.  

Table 3. 2019 wind speed prediction comparative methods 

Method Q1 2019 Q2 2019 Q3 2019 Q4 2019 

kNN 

(k value) 
81 62 75 41 

kNN 

(RMSE) 
1.31 1.13 1.16 1.31 

WSPL 

(RMSE) 
1.36 1.28 1.27 1.45 

XGBoost 

(RMSE) 
1.32 1.14 1.17 1.31 

DTR 

(RMSE) 
1.64 1.3 1.27 1.52 

Table 4 outlines the measured performance and k 
value used for the 2020 test periods for each quarter, 
performed using kNN regression for wind speed 
prediction.  

Table 4.  2020 wind speed prediction performance values 

Fig. 3 to Fig. 6 outline the 2020 week-long wind 
speed predictions based on 2019 quarterly training data. 
Predicted wind speed is given in meters per second (m/s).  

 

Fig. 3. 1-week 2020 wind speed prediction (Q1 2019 training) 

Value Q1 2020 Q2 2020 Q3 2020 Q4 2020 

k value 81 62 75 41 

kNN 

(RMSE) 
1.13 1.17 1.34 1.99 
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Fig. 4. 1-week wind speed prediction (Q2 2019 training) 

 

Fig. 5. 1-week wind speed prediction (Q3 2019 training) 

 

Fig. 6. 1-week wind speed prediction (Q4 2019 training) 

3.2. Quarterly power generation results 

Table 5 outlines measured performance and k value used 

for the 2019 test periods for each quarter, performed using 

kNN regression for power generation prediction based on 

predicted and SCADA-derived hub-height wind speeds.  

Table 5. 2019 Power generation prediction performance values 

Value 
Q1 

2019 

Q2 

2019 

Q3 

2019 

Q4 

2019 

k value 38 30 19 97 

Predicted 

wind speed 
261.36 169.14 236.86 382.08 

SCADA 

wind speed 
57.20 35.96 45.86 63.33 

Table 6 outlines measured performance and k value 

used for the 2020 test periods for each quarter, performed 

using kNN regression for power generation prediction 

based on predicted and SCADA-derived hub-height wind 

speeds.  

Table 6. 2020 Power generation prediction performance values 

Value 
Q1 

2020 

Q2 

2020 

Q3 

2020 

Q4 

2020 

k value 38 30 19 97 

Predicted 

wind speed 
239.67 268.36 323.48 434.63 

SCADA 

wind speed 
49.10 90.06 59.46 253.12 

Fig. to Fig.  outline the 2020 week-long power 
generation predictions based on 2019 quarterly training 
data. Predicted power generation is given in kilowatts 
(kW).  

7 10

 

Fig. 7. 1-week 2020 power prediction (Q1 2019 training) 

 

Fig. . 1-week 2020 power prediction (Q2 2019 training) 8

 

Fig. . 1-week 2020 power prediction (Q3 2019 training) 9
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Fig. . 1-week 2020 power prediction (Q4 2019 training) 10

. . Live SimTwin result 3 3

Fig. 1  and Fig. 1  show the graphical output of the 
forecasted hub-height wind speed and power generation 
calculated for a future 48-hour period, giving a graphical 
demonstration of the live deployment of the SimTwin as 
would be displayed in the Azure Digital Twin (see Fig. 2). 

1 2

 

Fig. 11. “Live” hub-height wind speed forecasting 

 

Fig. 1 . “Live” power generation forecasting 2

4 Discussion 

It has been demonstrated that the SimTwin framework 
proposed is deployable and capable of providing live and 
updating forecasts of future hub-height wind speed and 
power generation for a wind turbine. This may prove 
useful for operators by reducing reliance on SCADA 
systems and associated physical wind turbine sensors. 
Additionally, as a DT necessitates the need for live data, 
this provides a useful tool for DT development where live 
and historical data may be limited.  

The testing results show that the kNN hub-height 
wind speed model was capable of upscaling historical 
OpenWeather low-level wind speed hub-height forecasts 
to a reasonable accuracy across all quarters tested barring 
Q4 2020, though still picked up on the general trend in 
wind speed fluctuations. The kNN regression approach 
taken produced lower RMSE results than WSPL and 
DTR. XGBoost results are generally considered on a 
similar level to that of kNN regression whilst requiring 
significantly greater model tuning and additional training 
time. As such, the kNN approach presented is considered 
the most appropriate for the development of an easy to 
deploy, responsive, DT system.   

The kNN power generation model showed relatively 
impressive results when using SCADA-derived hub-
height wind speed for the week tests undertaken for Q1, 
Q2 and Q3 of 2020. Q4 proved more challenging to 
predict, resulting in lower accuracy, however this is 
anticipated to be due to a partial shutdown of the wind 
turbine when no generation occurred. This demonstrates 
that the kNN power generation prediction model is 
generally capable of providing accurate power generation 
results given an optimum hub-height wind speed input.  

When predicting power generation using predicted 
hub-height wind speeds, the model also demonstrated 
reasonably accurate results, capturing the general trend of 
power generation. The RMSE for this was higher than 
utilising the SCADA-derived wind speeds, due to the 
error already introduced when upscaling the predicted 
hub-height wind speeds.  

It was also demonstrated that the proposed 
framework can produce reasonable predictions for both 
short and long timescales, thus increasing its potential 
usefulness. 

Table 7 highlights select results from Fahim et al. 
[9]. Week-long quarterly hub-height wind speed 
predictions were undertaken for a different wind farm 
than that test in this paper, however, this is considered a 
useful comparative metric for predicting wind speed. 

Table 7. Wind Speed Predictions [48] 

Test Wind Speed RMSE (1 Week) 

Q1 2018 1.76 

Q2 2018 1.25 

Q3 2018 0.88 

Q4 2018 0.90 

Hub-height wind speed predictions utilising the 
kNN hub-height wind speed model produced a  lower 
RMSE in both Q1 and Q2 in both 2019 and 2020, though 
RMSE was higher in Q3 and Q4 2019 and 2020. Overall, 
it is considered that the ability to upscale wind speed from 
an easily accessible source of wind speed data, make 
predictions over long timescales and the simplicity of the 
kNN model may potentially be worth the trade-off in the 
correct circumstances, such as in situations with limited 
data availability and where ease of model training is 
required. 
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Despite this, there are potential methods that could 
be utilised to improve performance. The use of alternative 
weather forecasting services [56] may give a more 
accurate representation of wind speed at the site of the 
wind turbine. The inclusion of other factors beyond wind 
speed and power generation may prove beneficial if 
available in alternative datasets. This includes 
temperature, pressure, wind direction and humidity [32]. 
Alternative approaches could be tested, such as deep 
neural networks [32] and hybrid approaches combining 
physics, statistics and machine learning techniques [28]. 

It is envisaged that the SimTwin framework 
demonstrated in this paper could act as an alternative 
system to SCADA systems, reducing reliance on wind 
speed sensors by providing reasonable wind speed and 
power generation forecasts for use by wind turbine 
operators. The relative simplicity of the system should 
also help with ease of deployment. Additionally, it is 
anticipated that the outputs of the SimTwin would provide 
a useful tool in research and development environments, 
particularly when access to live wind speed and power 
generation forecasts are needed but inaccessible. This 
includes research into the fatigue effect of wind loading, 
the management of power generation and the storage of 
additional power generation, which can be undertaken in 
real-time.  

Future work should look to include the potential 
improvements highlighted and test the model for different 
wind turbine models in differing locations, including both 
onshore and offshore installations. 

5 Conclusion 

Wind power is a key pillar for the decarbonisation of 
electricity generation. Digital Twin (DT) technology 
allows increased integration between physical assets and 
virtual models including live monitoring, updates and 
predictions, allowing suitable and informed actions to be 
undertaken. It has been demonstrated that a power 
generation forecasting Simulated Digital Twin (SimTwin) 
is achievable, providing hub-height wind speed and power 
generation predictions beyond the timeframe of data 
availability via the use of a weather forecast API and 
machine learning in the form of k-nearest neighbour 
(kNN) regression-based models.  

The use of kNN regression for hub-height wind 
speed prediction was seen to have comparable or better 
results when compared to the Wind Speed Power Law 
(WSPL), Decision Tree Regression (DTR) and Extreme 
Gradient Boosting (XGBoost) regression. Additionally, it 
has been demonstrated that this approach can provide 
reasonable predictions for short and long timescales. This 
reduces reliance on Supervisory Control and Data 
Acquisition (SCADA) systems and associated physical 
wind turbine sensors and provides a useful tool in DT 
research where dataset availability may be limited. 
Furthermore, by using live openly available weather data, 
power generation predictions can be expanded to entire 
wind farms, as well as for regional, national or global 
ranges of wind turbine power production.  

Future work should look to provide improvements 
to hub-height wind speed predictions and power 
generation forecasts. This may be achievable by using 
different machine learning techniques, alternative weather 
prediction sources, hybrid approaches and more detailed 
historical power generation and wind speed datasets. 
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