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Abstract. The renewable energy industry has gained so much attention due to the global importance 

attached to it. However, these sources are volatile in nature, hence, it is important to properly plan the 

production system to ensure continuity. This work focused on production and maintenance of wind energy 

system as a stand-alone system for rural electrification. The methodology for power production forecast in 

this work is optimization using machine learning technique; support vector regression (SVR) and estimation 

from theoretical technique. The production optimization is aimed to determine the optimal number of panels 

and batteries required to satisfy the random demand at minimal cost. In order to improve the system 

functionality and minimize failure, an integrated preventive maintenance model was developed to determine 

the optimal number of maintenances to be performed. Thus, scheduling optimal time to perform the 

preventive maintenance. The maintenance model is integrated with the power production rate to determine 

the maintenance cost. A numerical simulation was presented in order to test the developed algorithm using a 

case study in Katsina, Nigeria. 

1 Introduction 

The ever-growing demand owing to increasing world 

population inspired us to contemplate alternative 

sustainable energy sources. Thus, eliciting many 

research in the area of renewable energy especially solar 

and wind energy. The current renewable industry is 

categorized with strong competition to satisfy the needs 

of a client that is often demanding in terms of energy 

availability, and cost. However, due to the stochastic 

nature of the renewable source, appropriate planning 

must be carried out to ensure customers’ needs are 

satisfied. The scope of this work is on the wind energy 

sector. Over the years, both offshore and onshore wind 

energy has received tremendous attention thereby 

causing annual increase in electricity generation from the 

wind as shown in figure 1. According to [1], a global 

installed capacity of 60.4 GW was injected in 2019, 

which marks the second largest year in history and close 

to the profuse year of 2015 (63.8 GW) thereby totaling 

the installed capacity to 651 GW in 2019. The increased 

injection of wind energy was forecasted by experts in [1] 

and is expected to rise to 355 GW by the end of 2024 (71 

GW annually averagely). 

In this study, a stand-alone wind energy 

development concept is established in terms of 

modelling and optimization. Stand-alone systems make 

isolated rural areas self-sufficient for basic needs such as 

cooking, pumping water and electricity in a cost 

effective and efficient manner without the need for 

central grid. Thus, the energy manager needs to 

efficiently optimize the number of components (wind 

turbines and batteries) required to satisfy the demand. In 

this work therefore, we developed a production model 

that minimizes the production cost by optimizing the 

number of wind turbines and batteries required for a 

rural settlement.  

Furthermore, a renewable energy (wind in our 

case) plant is treated as a production industry. Therefore, 

it is important to perform maintenance on the system in 

order to improve its functionality to minimize failure and 

loss of customer’s trust. In this context, we developed 

maintenance strategy integrated with the power 

production already stated earlier. To develop optimal 

joint production and maintenance planning, [2] presented 

an integrated model of preventive maintenance 

production and planning for multi-state systems. An 

integrated preventive maintenance strategy was 

developed by [3] which factors turbine degradation and 

spare part sourcing as the constraints in their work, with 

the aim of determining the optimal total cost related to 

production, maintenance and spare parts. [4] presented 

an integrated maintenance economic plan related to wind 

turbines ‘energy production by minimizing the total 

costs of production and maintenance considering the 

production rate and the degree of deterioration of the 

turbine over the horizon.  

Having studied the above works, we can say that 

the main objective of maintenance planning is to 

determine the optimal number of preventive maintenance 

sessions (N*) to be performed over a production horizon 

(H), taking into account the optimal production plan 
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along with the costs associated with preventive and 

corrective maintenance. 

2 Mathematical modelling 

In this section, mathematical modelling problem for both 

production optimization and maintenance policy are 

formulated and presented as follows:  

2.1. Production optimization problem 

The mathematical modelling for optimizing the 

production system is implemented by minimizing the 

cost of the system subject to constraints as expressed 

below: 

Subject to: 

The total cost of the system  is then elaborated 

as  

(1) 

(2) 

(3) 

 is the capital cost of purchasing and installing the 

components and  is the operational cost. The 

operational cost comprises of costs of production (

cost of storage  and cost of shortage evaluated 

as follows: 

(4) 

(5) 

(6) 

Storage and shortage costs  are evaluated 

based on the condition of the battery’s state of charge 

which will be later discussed. However, in the meantime, 

they are modelled as 

 for storage 

and 

 for shortage 

. 

2.2 battery sizing 

The battery storage sizing is formulated based on a 

battery’s state of charge (SOC) at any time t which is 

expressed as follows:  

(7) 

Given that 

(8) 

Where  are the battery voltage and capacity 

respectively,  are 

defined as generated power, load demand power, wind 

turbine power, number of required turbines and the 

battery’s total capacity correspondingly. To ensure good 

performance of the battery bank, [5] introduced cycle 

invariance criterion such that SOC at t returns to its 

initial state at the end of each production 

period. This is mathematically articulated as 

(9) 

However, the total battery capacity  is undetermined. 

Hence, we let  denote the available energy 

capacity of battery bank at t expressed as: 

(10) 

We assume that the initial condition  which 

means the battery is empty at the initial condition. To 

avoid deep cycle, a suitable initial condition is proposed 

such that  at each period is characterized by the 

SOC 

(11) 

In order to determine the total battery bank capacity 

over a finite time horizon (H), the  must satisfy the 

following condition  

(12) 

where 

(13) 

On another hand, to improve the battery efficiency, 

energy flow in the battery must be limited within a 

certain range expressed as follows  

(14) 
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Each battery cycle is characterized by its depth of 

discharge (DOD) to minimize deep cycle. This means 

that the amount of capacity withdrawn from a battery is 

expressed as a percentage of its maximum capacity. 

Therefore, the allowable DOD must be taken into 

account in order to extend the working life of the battery. 

Accordingly, the  is maximum of the combination of 

equation 12 and 13 expressed in the following form [6]: 

(15) 

 2.3 Power production 

For the purpose of this study, we developed the 

production model based on SVR and theoretical 

formulation using the Weibull function. They are 

modelled as follows: 

i. Support Vector regression (SVR)

A Support Vector (SV) is a nonlinear kernel-based 

machine learning technique used for regression as well 

as classification. It consists of creating or mapping 

training data into hyper-planes to vividly discriminate 

predictions from training data in the feature space shown 

in figure 1. It functions when it is being activated by an 

activation function known as ‘kernel function’. A 

support vector regression output prediction is calculated 

in the following form: 

(16) 

where  is the activation function, x is an input data 

point. w is a normal vector and b is a scalar. They are 

estimated by minimization of regularized risk function 

solved as follows [7]. 

(17) 

Subject to 

represents the regularization term, yi is the ith 

target and C is the error penalty factor used to control 

trade-offs between regularization term and empirical 

risk.  is the deviation threshold of the function f, and  

is the slack error that guarantees the solution by coping 

the in-feasible constraints and n is the number of 

elements in training data sample. 

ii. Performance analysis

This analysis is used to validate the forecasted output of 

the SVR model. We adopted the root mean square error 

for this work. Thus expressed: 

(18) 

where  is the true or measured value of the output, 

is the forecasted output and n is the total number of data 

set. 

Fig. 1. Support Vector Regression. 

iii. Theoretical Weibull modelling:

Estimating wind energy from a wind turbine is an 

essential aspect of theoretical wind energy management. 

It enables the manger to estimate the quantity of wind 

energy to be produced per period. Wind speed is often 

treated as a random variable characterized by Weibull 

distribution function expressed as follows: 

(19) 

where v is the wind speed (m/s), c and a are the Weibull 

scale and shape parameters. Different methods of 

calculating the two parameters of Weibull distribution of 

wind speed are available in literature [8]. From which 

the obtainable average wind power Pwind from a turbine is 

estimated by: 

(2
 

0)

where Pr is rated power of the turbine, υr is rated wind 

speed and υci is the cut-in wind speed, υco is the cut-out 

wind speed respectively, a is Weibull shape parameter.  

2.4 Maintenance planning problem formulation   
The objective of this section is to determine the optimal 

period to perform preventive maintenance on a wind 

turbine defined by the optimal number of preventive 

maintenance sessions. The progression of a wind turbine 

failure rate during each production period is modelled as 

a function of time and production rate presented by the 

following relationship: 

(21)  

Where the nominal failure rate ( ) modelled with 

Weibull distribution as follows 

(22) 

 and  being Weibull scale and shape parameters 

respectively. Our maintenance problem is therefore 

formulated taking into account the influence of the 

equipment degradation presented in the following form 

[9]; 

(23) 
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where  is average failure rate, and we can say 

that  . 

As already stated, the maintenance strategy adopted in 

this work is perfect maintenance with minimal repair. 

Thus, evaluating the average number of failures between 

preventive maintenance intervals. It is a function of 

production rate  and N determined by calculating the 

integral of the function rate of the failure which must be 

a monotonically increasing function expressed as 

follows: 

 

2.5 Integrated production and maintenance 
algorithm   

In order to determine the optimal number of preventive 

maintenance actions, we propose the following simple 

numerical procedure shown on fig 2. The algorithm 

calculates maintenance cost corresponding to N ∈ {1…}. 

N* is the optimal N with the lowest maintenance cost 

Mc*. From the beginning of the algorithm, for each N, 

the associated cost Mc is calculated. In two successive 

computations, Mc with minimal amount automatically 

becomes the optimal cost Mc* and is stored until a lesser 

cost is obtained. In that case, the new minimal cost 

automatically becomes the optimal. All the wind turbines 

are assumed to be identical with similar power ratings, 

thus expected to have same power output. Therefore, 

maintenance planning is considered for one (1) wind 

turbine. 

3 Numerical analysis 

This section is aimed at demonstrating the viability 

of our developed algorithm for Katsina wind farm in 

Nigeria as the case study. Katsina is the capital of 

Katsina state in the federal republic of Nigeria located at 

13º01'N latitude and 07º41'E longitude. We consider the 

pilot 10 MW wind farm installed in Katsina having 

average monthly wind speed presented on table 1. The 

wind system is considered as a stand-alone wind/battery 

energy system supplying a remote area of Lambar Rimi 

community which has a monthly average load demand 

also shown on table 1. 

Fig. 2. Numerical procedure to determine optimal number of 

maintenances (N*). 
Table 1. Input parameter for Lambar Rimi 

Period (k) Wind speed 

(m/s) 

Load demand 

(kW) 

1 5.4 48 

2 3.9 42 

3 4.5 50 

4 5.7 74 

5 4.3 70 

6 4.9 60 

7 4.5 67 

8 4.3 69 

9 3.5 51 

10 3.6 52 

11 3.3 42 

12 4.7 35 

It is estimated that the cost of energy production and 

storage from wind power plant is 15 NGN and 17 NGN 

respectively (NGN = Nigerian Naira). When load 

demand is unmet and energy has to be sourced from the 

grid, the cost of this shortage is obtained at 25 NGN. The 

cost of purchasing a Hummer H25-100kW turbine is 

1,800,000 NGN. Table 2 presents the maintenance 

parameters. 

Table 2. Maintenance planning data 

ƞ Cpm (NGN) Ccm (NGN) 

1.5 5 50,000 300,000 

3.1 Production result 

Analysis of power production forecasting to show SVR 

model accuracy with rMSE is 3.42%. With this 

performance index, we can certainly say that our model 

fits well with the data.  
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Fig. 3. Power available in the battery for the 2 models. 

The optimal production plan for both theoretical and 

SVR methods as well as the quantity of power in the 

battery are presented on table 3. 

Table 3. Optimal wind production plan 

Theoretical SVR 

Total cost = 45.2808 

x107 (NGN) 

Total cost = 42.3162 

x107 (NGN) 

Period 

(k) 

Number 

of wind 

turbines 

(wt) 

Power 

generated 

(x106W) 

Number 

of wind 

turbines 

(wt) 

Power 

generated 

x105 (W) 

1 4 3.770 3 2.300 

2 3 1.160 2 1.730 

3 4 2.110 2 1.880 

4 5 4.390 3 2.760 

5 3 1.770 2 1.840 

6 3 2.810 3 2.110 

7 4 2.110 3 2.030 

8 3 1.770 2 1.990 

9 3 0.608 2 1.490 

10 3 0.742 2 1.570 

11 3 0.354 2 1.460 

12 4 2.450 3 2.180 

From the tables of results, cost of production from the 

theoretical technique is seen to be higher than the SVR 

technique. This can be explained by the fact that the 

theoretical technique uses Weibull function which 

depends on random Weibull parameters for a wind 

turbine. With the SVR, it is a forecast from the real-life 

situation of the powerplant, hence providing a true 

solution. 

3.2 maintenance planning result 

The proposed optimal maintenance plan is presented on 

table 4 showing the optimal values for the maintenance 

costs as well as the number of PM sessions for SVM and 

theoretical techniques. From the table, it is seen that the 

optimal maintenance to be performed on the system is 2 

to be performed every 6 months for both techniques. The 

theoretical technique presented the minimal cost of 

maintenance at 198,901 NGN while with the SVM, the 

cost is 207,316 NGN.  

Table 4. Optimal number of preventive maintenances 

Technique N* Cost (NGN) 

SVM 2 207,316.00 

Theoretical 2 198,901.00 

3.  sensitivity analysis 3

In this section, we seek to study the influence of the 

change of some parameters on the maintenance plan. We 

therefore study the variation in the values of the unit 

costs of preventive maintenance (Cpm) and corrective 

maintenance (Ccm) and their effect on the optimal 

number of preventive maintenance sessions to be carried 

out on the wind energy system. Here, we vary the 

difference between corrective maintenance costs and 

preventive maintenance costs by increasing the 

difference of corrective maintenance from NGN300,000 

to NGN 500,000, NGN 700,000 and NGN 900,000 

keeping the preventive maintenance cost at NGN50,000. 

The obtained result is shown on table 5. 

Table 5. Optimal number of PM (N*) with varying cost of 

corrective maintenances:  

Ccm 

(NGN) 

Technique N* Cost 

(NGN) 

500,000 SVM 3 266,600.00 

Theoretical 3 250,295.00 

700,000 
SVM 3 313,240.00 

Theoretical 3 290,413.00 

900,000 
SVM 3 359,880.00 

Theoretical 3 330,531.00 

By varying the maintenance costs, the optimal number of 

actions to be performed are 3 for both SVM and the 

theoretical approach which are to be performed every 4 

months. With further increase to NGN 700,000, it yields 

the same result. This means that the cost increases by 

reducing the effect of failure rate on the system. This can 

be said to be caused by the influence of Weibull 

parameters on the maintenance cost. 

4 Conclusion 

In this work, we developed methodology for optimizing 

a wind farm considering katsina in Nigeria as our case 

study. For each period over one-year horizon, the 

optimal number of wind turbines, the battery capacity 

required and the quantity of energy produced were 

obtained and the total production cost presented. 

Maintenance planning scheduling was also proposed to 

determine the optimal number of maintenance sessions 

to be performed and the optimal cost associated with it. 

The optimal wind energy plan obtained with the machine 

learning technique presented the least production cost. In 

this case, we can say Weibull parameters influence the 

cost estimation.  For further work, a metaheuristic 

method of artificial intelligence will be applied to solve 

both production and maintenance problems. 
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