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Abstract. As an effort to promote renewable energy-based power generation, one of Malaysia’s 
initiatives is the net-energy metering (NEM) scheme. One of the shortcomings of residential 
Photovoltaic (PV) systems under the NEM scheme is that it operates with smart meters only 
whereby the actual load profiles by the residential consumers remain unknown. Accurate load 
prediction for NEM consumers is crucial for optimizing energy consumption and effectively 
managing net metering credits. This study proposes a new model that incorporates an adaptive 
learning rate and Long Short-Term Memory (LSTM) to predict the solar output power that 
subsequently predicts the actual load used by the NEM residential consumers. The proposed model 
is trained and tested using historical time series data of projected PV power and weather conditions, 
considering the GPS location of the PV system. The outcome of the proposed model is then 
compared with other state-of-the-art models like ARIMA and regression methods. It is shown that 
the proposed model outperforms the traditional forecasting models with a Root Mean Square Error 
(RMSE) value of 0.1942. 

1 Introduction  

In commitments with the Paris Agreement that addresses 

environmental issues, Malaysia intends to reduce its 

greenhouse gas (GHG) emissions intensity by 45% in the 

year 2030. This exhibits Malaysia’s efforts to promote 

power generation from renewable resources, most 

commonly from solar, wind, and water resources. To 

achieve a low-carbon future and mitigate energy issues 

in terms of security, efficiency, and demand 

management, several key policies and incentives were 

introduced [1]-[4].  

One of them is the Net-Energy Metering (NEM) 

scheme for residential Solar Photovoltaic (PV) systems. 

Introduced in 2016, Malaysia's Net Energy Metering 

(NEM) scheme has emerged as a pivotal policy to 

incentivize the adoption of renewable energy sources by 

allowing consumers to receive credits for surplus energy 

exported to the grid. As shown in Fig.1, the concept of 

NEM is that the energy produced from the installed solar 

PV system will be consumed first, and any excess will 

be exported to the electric utility provider [5]-[6]. 

However, a NEM residential PV system does not have a 

separate meter to monitor and measure the PV output 

power, unlike commercial and industrial sites that have 

independent meters to measure solar power parameters. 

 
Fig. 1. A residential PV System that is installed with NEM [7]. 

The supply and load parameters are obtained via 

the Advanced Metering Infrastructure (AMI), i.e., Smart 

Meters. Only the electrical power that is imported to and 

exported from the grid can be extracted from the smart 

meter. However, the actual load consumed by the 

customer is unknown. Therefore, it is crucial to have 

accurate and reliable forecasting of solar power to know 

the actual load profiles of residential solar PV 

consumers. This acts as backup information and 

preparation to meet future demand when the penetration 

of residential solar power increases or during any 
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emergency. Accurate load prediction for NEM 

consumers is crucial for optimizing energy consumption 

and effectively managing net metering credits [7]-[8].  

Before load prediction is attempted, it is essential 

to forecast the solar irradiance (GHI) and the solar 

output power. These two variables play essential roles in 

predicting the actual load of the NEM consumers more 

accurately as they provide information on the pattern or 

trend of solar energy production. GHI, PV power, and 

load forecasting are time series forecasting since they 

vary concerning the time variable. Time series data 

forecasting simply means predicting the future value 

(short or long-term) under the influence of historical or 

past data over a defined period [9]. Time series 

forecasting techniques are divided into two main 

categories: univariate and multivariate approaches [10, 

11]. Univariate forecasting uses only a single variable, 

such as the historical PV power output, to make 

predictions. It captures the temporal dependencies and 

patterns inherent in the PV power time series data. On 

the other hand, multivariate forecasting incorporates 

additional variables, such as weather data, solar 

irradiance, ambient temperature, and other relevant 

factors, to enhance the accuracy and robustness of the 

predictions. By considering multiple variables, 

multivariate models can capture the complex 

relationships and dependencies between different factors 

influencing PV power generation. 

Several studies on load forecasting and prediction 

models for NEM consumers in various countries have 

been conducted especially using traditional approaches, 

such as ARIMA and regression-based methods, which 

have been widely employed. However, these methods 

often struggle to capture the non-linear dynamics and 

temporal dependencies present in energy consumption 

and generation. On the other hand, machine learning, 

including deep learning techniques, is now very popular 

in the field of PV power and load forecasting due to its 

high prediction accuracy and its ability to handle big and 

complex data. Long Short-Term Memory (LSTM), a 

type of recurrent neural network (RNN), has shown 

promising results in time series forecasting, especially 

short-term PV power forecasting. Hence, this work 

proposes an adaptive learning rate Long Short-Term 

Memory (LSTM) model with an optimized window size 

for NEM residential actual load prediction in the context 

of the Malaysian energy landscape, leveraging its ability 

to capture temporal patterns and dependencies. 

2 Related Works  

Deep learning algorithms have been widely studied in 

the application of GHI, power, and load forecasting. 

These approaches leverage the power of neural networks 

to capture complex patterns and relationships within the 

data. The most commonly used model for forecasting is 

the Long Short-Term Memory (LSTM)-based model 

since it has shown promise in improving prediction 

accuracy. The following are several recent works on 

GHI, power, and load prediction via LSTM-based 

models.  

 For instance, [12] applied the basic LSTM model to 

perform short-term forecasting of the actual load for 

demand response management in India. [13] 

demonstrated PV power forecasting using a hybrid 

LSTM-based model for one hour ahead. [14] applied the 

LSTM model to predict short-term PV power output 

using weather forecast data. [15] employed an LSTM-

based deep learning model to forecast PV power 

generation with high accuracy, incorporating historical 

PV power data and weather forecast information. [16] 

predicted PV power and load demand using the LSTM 

model with the infusion of different weather parameters 

such as air density, temperature, cloud cover irradiance, 

etc. [17] studied short-term solar power forecasting using 

a hybrid model (LSTM-TCN) using only historical PV 

power data. [18] forecasted GHI for using LSTM based 

on historical data. [19] compared LSTM and Random 

Forest methods for PV power forecasting. These works 

suggest that LSTM is a better prediction model as 

compared to other state-of-the-art models and that 

LSTM is more effective in handling multivariate data.  

 LSTM-based models have been tested for GHI and 

power forecasting in abundant research studies. 

However, further experiments using the LSTM-based 

models for load prediction are still limited to date, 

especially predictions specifically tailored for the 

residential NEM scheme in Malaysia. Hence, this paper 

aims to address this research gap by adapting and 

optimizing the LSTM model for NEM actual load 

prediction in the Malaysian context. 

3 Methodology  

3.1. Data Collection 

3.1.1 Weather Data Collection 

For this study, the GHI and weather data were gathered 

from two independent fee-based databases which are the 

National Solar Radiation Database (NSRDB) and 

SOLCAST [20, 21]. Four years of weather data extracted 

are from the residential PV consumers located in the 

region of West Melaka, Malaysia. Fig. 2 shows the 

geographic location of the selected residential PV 

consumers for this study as highlighted in red. The main 

data extracted from SOLCAST are the GHI, cloud 

opacity, air temperature, speed, and direction of the 

wind. NSRDB provides other key features like beam and 

diffuse irradiance.  

Based on previous studies [15-16, 22-24], by 

including other weather data like irradiance, ambient 

temperature, and other correlated features, the model can 

integrate the pattern between different features better, 

leading to more accurate predictions. However, it is also 

equally important to feed the model with only related 

features and discard irrelevant features to avoid 

overfitting information to the model. This can be done 

with the aid of correlation analysis whereby only the 

positively-correlated features will be chosen as inputs. 
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Fig. 2. Selected residential PV consumers for this study. 

Fig. 3. Heatmap Correlation Analysis of SOLCAST and 

NSRDB data 

To obtain the best combination of input features for the 

proposed model, Heatmap Correlation analysis is done 

using both datasets, i.e., SOLCAST and NSRDB 

datasets. Heatmap correlation shows related features in 

different shades of red. The darker the red shade, the 

more the features are related to each other. Also, these 

features normally lie in the positive range of the map, 

i.e., above 0. From the Heatmap correlation analysis in 

Fig.3, the GHI generation is positively influenced by the 

features that are highlighted in red. Only the highlighted 

features are fed as inputs to the proposed model input 

features selection. By utilizing these most impactful 

features as highlighted in Fig.3, the proposed model can 

simplify the input feature selection process and avoid 

overfitting of information. This greatly improves the 

accuracy and also speeds up the computing time. 

3.1.2 NEM data collection 

The residential NEM consumers have only smart meters 

connected to their independent PV systems. These 

meters only show the imported and exported power 

values to and from the grid respectively. The import and 

export values are the base parameters in this study which 

are used to predict the pattern of the actual load of the 

selected consumers. These values were extracted from 

Malaysia’s main utility provider database from the year 

2020 to 2022. 

3.1.3 Solar irradiance distribution analysis 

The following analysis studies the distribution pattern of 

solar irradiance (GHI) in the selected area, West Melaka, 

Malaysia. Fig. 4 is a boxplot showing the GHI by hour 

of every day of 2022. It is observed that the irradiance 

can be consistently detected from 8 a.m. to 6 p.m. and is 

at its peak between 12 p.m. to 1 p.m. every day in the 

selected area. This indicated a strong correlation between 

the GHI and the time variable, which is a useful input to 

the proposed model. Next, based on the previous 

findings, the distribution of GHI at the peak hour (12 

pm) of each day throughout the year 2022 is studied, as 

shown in Fig. 5. This plot reveals that the GHI 

distribution is at peak, has no major variations and the 

availability is again consistent throughout the year.  

Fig. 4. Distribution of hourly GHI data throughout 2022  

Fig. 5. Distribution of GHI data at 12 p.m. on each day of the 
month throughout 2022. 

3.2. The Proposed Model 

In this study, an adaptive learning rate LSTM model 

with an optimized window size is proposed for 

forecasting the actual load of residential NEM 
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consumers. The integration of the adaptive learning rate 

aims to improve the performance and efficiency of the 

LSTM model in capturing the complex patterns and 

temporal dependencies in the selected input data.  

The proposed LSTM model for NEM actual load 

prediction in Malaysia consists of multiple LSTM layers 

followed by a fully connected layer. The model takes as 

input the historical energy consumption, renewable 

energy generation, and other contextual features. The 

LSTM layers capture temporal patterns and 

dependencies, while the fully connected layer produces 

the load prediction. To enhance the model's 

performance, an adaptive learning rate mechanism is 

incorporated, allowing the model to dynamically adjust 

the learning rate based on the data characteristics.  

This section describes the training process of the 

proposed model using the collected historical data, 

which considers both energy consumption and renewable 

energy generation as input features. The training process 

includes optimizing the learning rate to enhance the 

model's performance and convergence. 

To train the LSTM model, the target label, which is 

'AC System Output' (solar power generation), along with 

the multivariate features, are fed into the model during 

training and evaluation. The 'AC System Output serves 

as the ground truth for the model to learn and predict. 

The multivariate features include 'Beam Irradiance 

(W/m2)', 'Diffuse Irradiance (W/m2)', 'Cloud Opacity', 

'Ambient Temperature (C)', and 'Cell Temperature (C)'. 

These features provide valuable information about the 

weather conditions and solar irradiance levels, which are 

crucial factors in accurately predicting energy 

consumption and renewable energy generation. 

During the training process, the LSTM model takes 

a sequence of input data consisting of historical values of 

the multivariate features and aims to predict the 'AC 

System Output'. This sequence is generated using a 

sliding window approach, where the window size 

determines the number of time steps considered in each 

input sequence.  

Consider a sliding window size of 5, corresponding 

to 5 consecutive time steps or hours of historical data. 

The LSTM model takes this input sequence of 

multivariate features as inputs and learns to predict the 

'AC System Output' for the next time step. This process 

is repeated for multiple input sequences, allowing the 

model to learn the patterns and dependencies in the data 

over time. 

Similar input sequences are fed into the trained 

LSTM model during the evaluation, and the model 

predicts the 'AC System Output' for each time step. 

These predictions can be compared with the actual 'AC 

System Output values to assess the model's performance 

and accuracy in forecasting energy consumption and 

renewable energy generation. 

By feeding the target label ('AC System Output') 

and the multivariate features into the LSTM model 

during training and evaluation, the model learns to 

capture the relationships between weather conditions and 

energy generation accurately. This approach enables the 

LSTM model to effectively utilize historical data and 

make accurate predictions for energy consumption and 

renewable energy generation in real-time scenarios.  

Lastly, with the predicted solar power generation 

by the proposed model, the actual load is determined 

using the formulae shown in the pseudocode in Fig. 6 

below. Three inputs to the prediction of the actual load 

are the predicted solar generation, import and export 

powers. Import power is needed whenever the generated 

solar power ('AC System Output') is insufficient to 

supply the electricity demand of a particular household. 

In contrast, when solar power generated is more than the 

actual consumption of a household system, it will be 

exported back to the grid. The overall methodology of 

this study is simplified in Fig.7. 

 

 

Fig. 6. Pseudocode of the actual load consumed calculation. 

 

 Fig. 7. Simplified flow of this research. 

3.2.1 Adaptive Learning Rate 

The adaptive learning rate plays a crucial role in 

optimizing the learning process of the LSTM model. By 

dynamically adjusting the learning rate based on the 

model's performance and convergence behaviour, the 

training process becomes more effective, avoiding the 

risk of getting stuck in suboptimal solutions or 

experiencing slow convergence. This adaptive 

mechanism enables the LSTM model to adaptively learn 

from the data and improve its forecasting accuracy over 

time. 

In this study, the Adam optimizer with a learning 

rate step of 0.02 is employed as an adaptive learning rate 

algorithm for the LSTM model. The Adam optimizer is 

widely used in training deep learning models because it 

adapts the learning rate based on the observed gradients 

during training. 

The Adam optimizer combines the concepts of 

adaptive learning rates and momentum-based 

optimization. It maintains a separate learning rate for 

each parameter in the model and updates these learning 

rates using estimates of the first and second moments of 

the gradients. These estimates are calculated using 
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exponentially decaying moving averages of the gradient 

and its square. 

The adaptive nature of the Adam optimizer enables 

it to automatically adjust the learning rate for each 

parameter based on the observed behaviour of the 

gradients. If the gradients for a specific parameter 

consistently exhibit large values, the optimizer reduces 

the learning rate to take smaller steps, preventing 

overshooting the optimal solution. Conversely, if the 

gradients are small, the optimizer increases the learning 

rate to accelerate convergence. 

The use of adaptive learning rates provided by the 

Adam optimizer offers several advantages. It eliminates 

the need for manual selection of an appropriate learning 

rate, as the optimizer dynamically adjusts the learning 

rate during training. This adaptivity facilitates faster 

convergence and improved stability, particularly in 

optimization landscapes characterized by sparse 

gradients or varying magnitudes. 

In the context of the proposed model, the adaptive 

learning rate mechanism offered by the Adam optimizer 

contributes to the overall effectiveness of the training 

process. It enables the model to effectively learn from 

the collected historical data, considering both energy 

consumption and renewable energy generation as input 

features. By dynamically adjusting the learning rate, the 

model can navigate the training process more efficiently, 

leading to higher accuracy in forecasting energy 

consumption and renewable energy generation. 

3.2.  Model Evaluation 2

In this paper, the Root Mean Square Error (RMSE) 

indicator is used to evaluate the performance of the 

actual load prediction model. The RMSE, given by (1) is 

a commonly used metric to measure the average 

magnitude of the errors between predicted and actual 

values. It is calculated as the square root of the average 

of the squared differences between each predicted value 

and its corresponding actual value which gives the 

overall accuracy of the forecasts while penalizing large 

forecast errors in a square order. A lower RMSE value 

indicates better accuracy and closer alignment between 

the predicted and actual values. To evaluate the 

performance of the proposed model, it is essential to 

compare its results with other existing forecasting 

models used in the literature. This comparative analysis 

provides insights into the effectiveness and 

competitiveness of the proposed model. 

                              (1) 

4. Results and Discussion 

4.1. Prediction of solar power generated. 

As illustrated in Fig.8, the proposed LSTM model can 

accurately predict solar power ('AC System Output') 

generated. It can be observed that the predicted value 

follows the actual value in a close manner. The input 

features chosen for the solar power prediction are air 

temperature, cloud opacity, relative humidity, wind 

direction, wind speed, beam irradiance, diffuse 

irradiance, ambient temperature, the plane of array 

irradiance, and cell temperature. Based on the output in 

Fig.8, it is proven that the incorporation of other weather 

data into the prediction model can help to boost its 

performance, accuracy, and efficiency. The best 

performance evaluation shows that the RMSE is 3.8471, 

MSE is 14.8004 with the best learning rate of 0.04. 

Fig. 8. Predicted solar generation values versus the actual 
generation values. 

4.2. Prediction and Comparison of the Actual 
Load 

The prediction of the actual load is executed by 

integrating the predicted solar power generated with 

import and export power distribution. The following 

figures are the results of the actual load prediction. 

Firstly, Fig. 9 shows the distribution of power imported 

from the grid. Highlighted in green in Fig. 9, it is 

observed that power is mostly imported during the “no 

sun” period (no GHI and solar power generation), i.e., 

from the evening till early morning of the next day. 

Moving on, Fig. 10 shows the distribution of power 

that is exported to the grid when the energy generated is 

in excess. This activity generally happens during the 

peak of each day, i.e., at noon times as shown in green in 

Fig. 10. Subsequently, Fig. 11 shows the distribution of 

the predicted solar power generation ('AC System 

Output'). This is the output from the proposed LSTM 

model with references to all the key features from Fig. 3 

as inputs. 

With references to the previous observations made 

on the import power, export power and the predicted 

solar power distributions, the prediction of the actual 

load is simulated. The parameters used in the actual load 

prediction are summarized in Table . The best actual 

load distribution configured is shown in Fig. 12 and 

finally compared with other state-of-the-art models and 

their respective parameters as shown in Fig. 13.  

1

 

5

E3S Web of Conferences 433, 02003 (2023)   https://doi.org/10.1051/e3sconf/202343302003
REEE 2023



Fig. 9. Highlighted import power distribution  

Fig. 10. Highlighted export power distribution  

Fig. 11. Highlighted the predicted solar power generated.  

Fig. 12 shows that the projected load line follows 
the import power value whenever the import power is 
higher than the solar generation value. Next, if the 
predicted value is higher than the export power value, 
the actual load is equal to the predicted value minus 
export power. Lastly, the projected load will follow the 

export power value if the export power is higher than the 
predicted value. The predicted distribution in Fig 12 

exhibits that the actual load is closely related to the 

generated solar power. This further proves the 

hypothesis made earlier which is that the load prediction 

is greatly improved with the inclusion of solar 

irradiance, solar power, and other related weather data 

subsequently.  

Table . Models’ parameters used in this study 1

Model Parameters 

Proposed 

LSTM 

• Optimised window size for input 

selection = 5:  

• Best learning rate using adaptive 

learning rate= 0.02:  

Gradient 

Boosting 

Regression   

• The number of boosting stages to 

perform; No. of estimators = 100 

• The learning rate for each boosting 

iteration= 0.1 

• The maximum depth of each decision 

tree = 3 

• The subsamples used for fitting the 

individual trees = 1.0 

Random 

Forest 

Regression 

• The number of decision trees in the 

random forest =100 

• The maximum depth of each decision 

tree = 10 

• The minimum number of samples 

required to split an internal node = 2 

• The minimum number of samples 

required to be at a leaf node = 1 

ARIMA  

• The order of the autoregressive part of 

the ARIMA model, p = 1 

• The order of differencing in the 

ARIMA model, d = 0 

• The order of the moving average part 

of the ARIMA model, q = 1 

Linear 

Regression 
• No specific parameters are set for the 

linear regression model. 

 
As the next and final step, the performance 

comparison and evaluation were done between the 
proposed LSTM model, Gradient Boosting Regression, 
Random Forest Regression, ARIMA, and Linear 
Regression as illustrated in Fig.13. Based on Table , it 
can be concluded that the adaptive learning rate LSTM 
with an optimized window size has outperformed all 
other models with the lowest RMSE of 0.19424 and 
MSE of 0. 03773. Table  shows the percentage of 
improvement in prediction by the proposed LSTM 
model when compared with other models used in this 
study. This proves that LSTM is so far one of the most 
accurate deep learning methods for forecasting.

2

3

  

 
.  
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Table . Comparison between the proposed model and other 

existing forecasting models 

2

Model RMSE MSE 

Proposed LSTM 0.19424 0.03773 

Gradient Boosting 

Regression   
0.19829 0.03932 

Random Forest 

Regression 
0.20769 0.04313 

ARIMA  0.80079 0.64125 

Linear Regression 0.99320 0.98644 

Table . Improvement (%) in prediction by LSTM model 3

Fig. 12. Highlighted predicted actual load distribution 

 Fig. 13. The comparison of the proposed LSTM model with 
other existing models 

As expected, the integration of an adaptive learning rate 
mechanism within the LSTM model has enhanced its ability to 
adapt to varying data characteristics specific to the Malaysian 
NEM scheme. This adaptation is crucial for capturing the 
dynamic patterns of load consumption and renewable energy 
generation in Malaysia. Also, via - the determination of the 
optimal window size, the model can capture relevant historical 
observations within the Malaysian NEM scheme which is a 
critical factor in improving load prediction accuracy 

5. Conclusion and future works 

This paper has proposed an LSTM model for NEM 
actual load prediction in the context of the NEM scheme 
in Malaysia. The integration of an adaptive learning rate 
mechanism and optimized window size within the 
LSTM model can capture the complex dynamics of load 
consumption and renewable energy generation specific 
to the Malaysian context. The proposed model 
outperforms the traditional methods tested in this study, 
providing more accurate load forecasts, and contributing 
to the successful implementation of the NEM scheme in 
Malaysia.  

Accurate load prediction for NEM consumers in 
Malaysia is crucial for optimizing energy consumption, 
managing net metering credits, and promoting the 
adoption of renewable energy sources. This study shows 
that the proposed LSTM model can empower consumers 
or the Grid System Operators (GSO) to make informed 
decisions regarding their energy usage patterns, further 
contributing to the sustainable development goals of 
Malaysia.  

Though the LSTM model shows promising results, 
it may face limitations in handling extreme load 
variations or unforeseen events specific to the Malaysian 
NEM scheme. Hence, future works are suggested to 
focus on incorporating additional contextual factors, 
such as grid constraints or policy changes, to enhance the 
model's predictive capabilities in the Malaysian context. 
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