Possibilities of applying time-classified tariffs in "smoothing" the loading graph of the electric energy system

Khakim Muratov¹, Kamoliddin Kadirov^{1*}, Alijon Kushev¹

¹Institute of Energy Problems, Academy of Sciences of the Republic of Uzbekistan, 100076 Tashkent, Uzbekistan

Abstract. In this paper, the impact of the use of time-classified tariffs on the electricity system is considered. That is, the possibility of adjusting the loads on the existing substation in the morning and evening "peak" periods was assessed. In exchange for using the results of the energy audit and applying the system of time-classified tariffs, it will be possible to achieve smoothing of the load schedule of the electric power system during "peak" periods. Consumers' use of the time-classified tariff system will reduce the loading period of the electric power system and change its regimes.

1. Introduction

In order to ensure the stable development of Uzbekistan's electric power system, it is important to develop effective solutions for the use of tariffs, form and regulate the existing ones.

Different methods are used to smooth the load graph in the electric power system. In particular, if some consumers are limited to a certain amount of electricity in "peak" periods, it will be possible to manage other consumers through different tariffs [1].

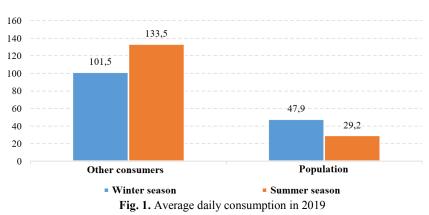
The main goal of electricity suppliers and consumers in electricity consumption is mutual efficiency. Regulation of tariffs in the electric energy system is one of the methodological aspects of sustainable development of the energy industry.

Due to the fact that the electricity consumption of consumers is different at different times of the day, rugged load graphs in the electric power system arise [2]. For this reason, the ruggedness of load graphs in the electric power system in many countries is a specific problem and causes the use of various methods to solve it [2, 3].

Consumer demand for electricity varies daily, weekly, monthly, quarterly and annually. At the same time, one of the factors that negatively affect the performance of the system is the ruggedness of the daily "peak" period in electricity consumption [4, 5, 6].

In addition, in the period from the beginning of 2020 to October 1, the indicator of electricity delivery to consumers was 44.9 billion. kWh, and it can be observed that the indicator was 1.3 billion kWh more than the corresponding period of 2019.

According to forecasts, the demand for electricity is expected to increase by 70 percent by 2030 compared to 2020.


In the near future, measures are being developed to introduce modern technologies that have been successfully tested in developed countries into practice in Uzbekistan [7].

52.1 billion kWh of electricity was supplied to consumers in 2019, and the average daily consumption in the autumnwinter season was 149.4 mln. kWh (including 47.9 million kWh for the population). In summer, the daily consumption is 162.7 mln. kWh (from which it was 29.2 kWh for the population) (Fig. 1).

It is important to determine the volume of delivered and consumed electricity, current technical condition of power transmission networks, and the amount of technical losses. "Smart networks" aimed at automatic management of network work and quick elimination of detected faults in electrical equipment are being expanded. Research is being conducted on the implementation of the necessary measures to divide the consumed electricity into tariffs depending on the periods of the day [8].

^{*}Corresponding author: kamoliddin.8484@mail.ru

Million kWh

It is important to regulate the load schedules of the electric power system, that is, to reduce the load during the "peak" periods of the day. It is necessary for the electricity transmission organization to form a real daily electricity load schedule for all consumers in a prescribed manner.

2. Research Methods

If the power consumed in peak periods (ΔP) is reduced by changing the operating mode of the enterprise, the annual consumption power $(a\Delta P)$ of the enterprise is also reduced. However, this may lead to a decrease in the production volume of the product. In order to maintain the overall production plan, underproduction during periods of peak consumption can be compensated by more production during nighttime periods.

$$n_0 T_0 = n_1 (T_0 - T_3) + n_3 T_3 = n_0 \alpha_1 (T_0 - T_3) + n_3 \alpha_3 T_3;$$
⁽¹⁾

where: T_3 – duration of the enterprise's electricity consumption during the "peak" period of the electric power system, kWh;

 α_1 – coefficient of electric energy used for the maximum product that is produced hourly in the maximum periods the electric power system;

 α_3 – coefficient of electric energy consumed for the minimum hourly produced product in the maximum periods of the electric power system.

Changing the operating mode of the enterprise leads to a change in the total annual costs. These costs can be expressed as follows:

$$3_{1} = \Delta K(E+p) + \Delta \Phi + X_{0} + n_{0}\gamma_{0} \times [\alpha_{1}\beta_{1}(T_{0} - T_{3}) + \alpha_{3}\beta_{3}T_{3}] + (P_{0} - \Delta P)a + n_{0}d_{0}[\alpha_{1}\beta_{4}(T_{0} - T_{3}) + \alpha_{3}\beta_{6}T_{3}]b;$$
(2)

where: ΔK – additional capital values after the change in the mode of operation;

E – efficiency ratio of capital investments, taking into account the payments;

p - depreciation rate;

 $\Delta \Phi$ – change of work mode;

 β_1 – coefficient that takes into account the volume of consumption of raw materials and materials in the production unit during the changed working hours;

 β_3 – the coefficient that takes into account the volume of consumption of raw materials and materials in the production unit at the time of maximum load;

 β_4 – Coefficient that takes into account the change in electricity consumption when production is changed in the interval T₀-T₃;

 β_6 - Coefficient that takes into account the change in electricity consumption when production is changed at time T₃;

The annual economic effect of reducing the load at peak times of the electric power system is determined by the following expression:

$$\Delta 3 = a \Delta P + n_0 \gamma_0 [T_0 (1 - \alpha_1 \beta_1) + T_3 (\alpha_1 \beta_1 - \alpha_3 \beta_3)] + n_0 d_0 [T_0 (1 - \alpha_1 \beta_4) + T_3 (\alpha_1 \beta_4 - \alpha_3 \beta_6)] b - \Delta K (E + p) - \Delta \Phi;$$
(3)

If $\Delta 3>0$, it is appropriate for the enterprise to reduce the amount of electricity consumption during the maximum load of the electric power system.

After a series of transformations, the appropriateness of the electric power system for the enterprise during periods of maximum load is expressed as follows:

(8)

$$a > \frac{\Delta K(E+p) + \Delta \Phi}{\Delta P} + \frac{n_0 \gamma_0}{\Delta P} [T_0(\alpha_1 \beta_1 - 1) + T_3(\alpha_3 \beta_3 - \alpha_1 \beta_1)] + \frac{n_0 d_0}{\Delta P} [T_0(\alpha_3 \beta_4 - 1) + T_3(\alpha_3 \beta_6 - \alpha_1 \beta_4)]b;$$
(4)

The decrease in electricity consumption during the night or semi-peak periods $(T_0 - T_3)$ changes the electricity consumption:

$$\Delta \Theta_{1,2} = n_0 d_0 (T_0 - T_3) (1 - \alpha_1 \beta_4); \tag{5}$$

During the period of maximum consumption (T₃) of the electric power system

$$\Delta \vartheta_3 = n_0 d_0 T_3 (1 - \alpha_3 \beta_6); \tag{6}$$

Change in total electricity consumption

$$\Delta \Im_{\Sigma} = n_0 d_0 [(T_0 - T_3)(1 - \alpha_1 \beta_4) + T_3(1 - \alpha_3 \beta_6)];$$
(7)

If $\Delta E > 0$, then the volume of the load in the operating mode, that is, the consumption of electricity, decreases, if $\Delta E < 0$, the consumption of electricity increases.

After changing the periods of electricity consumption (due to the increase in electricity prices in "peak" periods), the period of maximum demand decreases:

$$\Delta K(E + p) + X_0 + \Delta \Phi + n_0 \gamma_0 (\alpha_1 \beta_1 T_1 + \alpha_2 \beta_2 T_2 + \alpha_3 \beta_3 T_3) + n_0 d_0 (\alpha_1 \beta_4 T_1 b_1 + \alpha_2 \beta_5 T_2 b_2 + \alpha_3 \beta_6 T_3 b_3);$$

where: $\alpha_1, \alpha_2, \alpha_3 - T_1, T_2$ and T_3 a coefficient that takes into account production in hourly load periods;

 $\beta_1, \beta_2, \beta_3$ - T₁, T₂ and T₃ the coefficient that takes into account the change in the consumption of raw materials and materials in production during the hourly load periods;

 β_4 , β_5 , $\beta_6 - T_1$, T_2 and T_3 a coefficient that takes into account the change in the consumption of certain energy when changing it in hourly load periods.

If the consumption of 1 kW h during the peak period (T_3, T_2) is transferred to the less valuable time (T_1, T_2) , the annual economic effect is achieved,

$$\Delta 3 = n_0 d_0 [T_1 b_1 (1 - \alpha_1 \beta_4) + T_2 b_2 (1 - \alpha_2 \beta_5) + T_3 b_3 (1 - \alpha_3 \beta_3)] + + n_0 \gamma_0 [T_1 (1 - \alpha_1 \beta_1) + T_2 (1 - \alpha_2 \beta_1) + T_2 (1 - \alpha_2 \beta_2) + T_3 (1 - \alpha_3 \beta_3)] - - \Delta K(E+p) - \Delta \Phi;$$
(9)

In this case, electricity consumption changes to the following value during the night, semi-peak and peak (T_1, T_2, T_3) periods:

$$\Delta \Theta_1 = n_0 d_0 T_1 (1 - \alpha_1 \beta_4); \tag{10}$$

$$\Delta \vartheta_2 = n_0 d_0 T_2 (1 - \alpha_2 \beta_5); \tag{11}$$

$$\Delta \vartheta_3 = n_0 d_0 T_3 (1 - \alpha_3 \beta_6); \tag{12}$$

The total change in electrical energy is expressed as:

$$\Delta \Theta_{\Sigma} = n_0 d_0 [T_1 (1 - \alpha_1 \beta_4) + T_2 (1 - \alpha_2 \beta_5) + T_3 (1 - \alpha_3 \beta_6)];$$
(13)

In any electricity consumers, there are certain minimum and maximum periods of consumption time. This, in turn, is directly related to time-classified tariffs.

3. Results and Discussions

It is necessary to increase the efficiency of electric energy and reduce the consumption of electric energy during the "peak" periods of the day. As a result, it is possible to reduce the load on the electric power system and increase the efficiency of consumers.

Research work was carried out in the following enterprises:

- «O'z-HANWOO» LLC JV ("Uzavtosanoat" JSC and "HANWOO GLOBAL Co.Ltd" Republic of Korea);

_ «O'Z ERAE CLIMATE CONTROL» LLC JV ("Uzavtosanoat" JSC and "Erae cs Limited" Republic of Korea);

Research work was carried out at "UzAuto Austem" LLC JV (Uzavtosanoat and AUSTEM Co.Ltd, Republic of Korea).

The months of the year with the least and most electricity consumption in the enterprises were conducted according to the periods of the day. As a result of this research, annual electricity savings and economic efficiency will be achieved due to the use of the tariff system in enterprises.

Enterprises are the main part of consumers connected to the 220/35/10 kV "Babur" substation. In terms of electricity consumption, household (population) consumers also consume almost as much as enterprises (Fig. 2).

The total number of consumers of the 220/35/10 kV "Babur" substation are 35, 5 of the cells are household consumers. The total consumption of consumers through the substation in 2020 was 182,225,314 kWh.

Fig. 2. 220/35/10 kV "Babur" substation's share of population and enterprises in electricity consumption (%)

Research was conducted on the lowest and highest electricity consumption months of 2020 in enterprises, i.e.:

- "Uz-HANWOO" LLC JV has the lowest in May (170,000 kWh), the highest in February (343,000 kWh);

- "O'Z ERAE CLIMATE CONTROL" LLC JV is the least in January (262784.6 kW·h), the most in February (375300.7 kW·h);

- "UzAuto Austem" LLC JV was observed to be the lowest in May (410,220 kWh), and the highest in February (548,940 kWh).

Enterprises make payments according to the tariffs, i.e. I-tariff, classified tariffs specified in the contract concluded with the municipal electric network enterprise (MENE). In 2020, the following results will be obtained if enterprises make payments according to the periods of the day in the months of the lowest and highest electricity consumption (Table 1).

Table 1. Payment indicators of enterprises by periods of the day in the months of the lowest and highest electricity consumption

Name of enterprises	Electric energy (kWh) Cost amounts (sums)	Months	From 00:00 to 6:00, From 22:00 to 00:00	From 06:00	From 09:00 to 17:00	From 17:00 to 22:00	TOTAL:
	Electricity consumption	May	39917	23943	74526	31614	170000
«O'z-	(kWh)	February	83784	46700	148825	63691	343000
HANWOO»		ices (sums)	300	675	450	675	
LLC	Tariff costs for the	May	11975100	16161525	33536700	21339450	83012775
	period of consumption (sums)	February	25135200	31522500	66971250	42991425	166620375
	Electricity consumption	January	81847,55	31781,4	93534	55621,61	262784,6
«O'Z ERAE CLIMATE	(kWh)	February	122930,7	45557,88	130681	76131,18	375300,8
CONTROL»	Tariff pr	Tariff prices (sums)		675	450	675	
LLC	Tariff costs for the period of	January	24554265	21452445	42090300	37544586	125641596
	consumption (sums)	February	36879207	30751569	58806450	51388546,5	177825773
	Electricity consumption	May	115745,4	52278,75	168642,1	73553,69	410220
	(kWh)	February	154919,4	68078,75	213798,1	112143,7	548940
«O'zAuto	Tariff pr	ices (sums)	300	675	450	675	
Austem» LLC	Tariff costs for the period of	May	34 723 614	35 288 156	75 888 963	49 648 741	195549474
	consumption (sums)	February	46 475 814	45 953 156	96 209 163	75 696 991	264335124

in 2020

For these consumers, it is economically efficient to consume during the night-time stimulated periods. For the electric energy system, this system of tariffs allows to eliminate morning and evening peak loads [9].

In enterprises, it is recommended to increase the consumption during the night by reducing the consumption during the day-time and "peak" periods of the day.

As a result:

firstly, the price of the produced products will be reduced due to low tariff prices in the night periods;

<u>secondly</u>, it is possible to reduce the load on the 220/35/10 kV "Babur" substation in the electric power system during the morning and evening "peak" periods.

Table 2 shows the results of using the results of the energy audit in the months of the year with the least and most electricity consumption and the application of time-classified tariffs.

 Table 2. Indicators of using energy audit results and application of tariffs classified by time in the months of the year when enterprises consume the least and most electricity

	Electric energy (kWh) Cost amounts (sums)	Months	From 00:00 to 6:00, From 22:00 to 00:00	From 06:00		From 17:00 to 22:00	TOTAL:
	Electricity consumption	May	66873	18943	44126	31514	161456
«O'z-	(kWh)	February	140584	38700	92825	54691	326800
HANWOO»	Tariff pr	ices (sums)	300	675	450	675	
LLC	Tariff costs for the	May	20061900	12786525	19856700	21271950	73977075
	period of consumption (sums)	February	42175200	26122500	41771250	36916425	146985375
	Electricity	January	98847,55	26781,4	80234	48621,61	254484,6
«O'Z ERAE	consumption (kWh)	February	129530,7	41857,88	113981	73631,18	359000,8
CLIMATE	Tariff prices (sums)		300	675	450	675	
CONTROL» LLC	Tariff costs for the period of	January	29654265	18077445	36105300	32819586,8	116656597
	consumption (sums)	February	38859207	28254069	51291450	49701047	168105773
	Electricity	May	148445,4	47578,75	128442,1	77053,69	401520
	consumption (kWh)	February	198119,4	59378,75	168678,1	107043,7	533220
«O'zAuto		ices (sums)	300	675	450	675	
Austem» LLC	period of	May	44533614	32115656	57798963	52011241	186459474
	consumption (sums)	February	59435814	40080656	75905163	72254491	247676124

The following results were obtained according to the use of the results of the energy audit of the energy consumption in the months of 2020 with the least electricity consumption of the enterprises and the tariff system stratified by time (Table 3).

Table 3. Months of 2020 with the least electricity consumption in periods of the day

kWh Sum	«O'z-HANWOO» LLC	«O'Z ERAE CLIMATE CONTROL» LLC	«O'zAuto Austem» LLC
When not using the tariff (kWh)	170000	262784	410220
When using the tariff (kWh)	161456	254484	401520
Difference between (kW·h)	8544	8300	8700
Price when not using the tariff (sums)	83012775	125641596	195549474
Price when using the tariff (sums)	73977075	116656597	186459474
Difference between (sums)	9035700	8984999	9090000

According to the results of Table 3, in the months when enterprises consumed the least amount of electricity in 202, 8544, 8300, 8700 kWh of electricity and 9035700, 8984999, 9090000 soums were saved.

If this saved electricity and the saved amount are multiplied by 12 months of the year, the following result was obtained (Table 4).

Table 4. 7 linder indicators of months with the feast electricity consumption in 2020							
kWh Sums	«O'z-HANWOO» LLC	«O'Z ERAE CLIMATE CONTROL» LLC	«O'zAuto Austem» LLC				
Electricity saved in the month of minimum consumption (kW·h)	8544	8300	8700				
One year (month)	12	12	12				
Annually saved electricity (kW·h)	102528	99600	104400				
The cost amount saved in the month of minimum consumption (soums)	9035700	8984999	9090000				
One year (month)	12	12	12				
Annual savings amount (sums)	108428400	107819988	109080000				

According to the results of Table 4, based on the calculation of the months when enterprises consumed the least amount of electricity in 2020, 102528, 99600, 104400 kWh of electricity and 108428400, 107819988, 109080000 soums were saved per year.

The annual average saved electricity of the enterprises and the amount were determined. The results of the months of 2020 with the most electricity consumption in the daily periods were obtained. The results were calculated using tariffs classified by utilization and time from the results of the energy audit and were as follows (Table 5).

Table 5. Consumption in peri	riods of the day in months with the	e most electricity consumption in 2020
------------------------------	-------------------------------------	--

kWh Sums	«O'z-HANWOO» LLC	«O'Z ERAE CLIMATE CONTROL» LLC	«O'zAuto Austem» LLC
When not using the tariff (kWh)	343000	375300	548940
When using the tariff (kWh)	326800	359000	533220
Difference between (kW·h)	16200	16300	15720
Price when not using the tariff (sums)	166620375	177825773	264335124
Price when using the tariff (sums)	146985375	168105779	247676124
Difference between (sums)	19635000	9719994	16659000

According to the results of Table 5, in the months when enterprises consumed the most electricity in 2020, 16200, 16300, 15720 kWh of electricity and 19635000, 9719994, 16659000 soums were saved.

The following result was obtained by multiplying the amount of electricity saved in the months when enterprises consumed the most electricity in 2020 and the amount saved by 12 months of the year (Table 6).

kWh	«O'z-HANWOO» LLC	«O'Z ERAE CLIMATE CONTROL» LLC	«O'zAuto Austem» LLC
Electricity saved in the month of minimum consumption (kW·h)	16200	16300	15720
One year (month)	12	12	12
Annually saved electricity (kW·h)	194400	195600	188640
The cost amount saved in the month of minimum consumption (soums)	19635000	9719994	1665900
One year (month)	12	12	12
Annual savings amount (sums)	235620000	116639928	199908000

Table 6. Annual indicators of the months with the most electricity consumption in 2020

According to the results of Table 6, based on the calculation of the months in which enterprises consumed the most electricity in 2020, 194400, 195600, 188640 kWh of electricity and 235620000, 116639928, 199908000 soums were saved per year.

It is necessary to use the results of energy audits in enterprises and to distribute electricity consumption in tariff periods classified by time. Increasing the consumption of enterprises during the stimulated periods of the night is beneficial to the "electricity supplier-consumer" system [10].

In recent years, the system of time-classified tariffs has been introduced in the republic only for consumers with an installed capacity of 750 kVA and above. The culture of using these tariffs has not yet been fully formed among consumers. But the research conducted in enterprises on this tariff system gave its results.

In enterprises, it is important to use the results of energy audits and apply time-classified tariffs. Shifting the consumption of electricity during the "peak" periods of the day to the stimulating periods of the night increases the possibility of obtaining significant results [11, 12, 13].

Table 7 shows the results of using the results of the energy audit and the use of tariffs classified by time in the months when the enterprises consume the least and the most electricity.

Table 7. Performance indicators of using	energy audit results in	enterprises and the applics	ation of time-classified tariffs in 2020
Table 7.1 enormance indicators of using	s chergy addit results in t	enterprises and the applied	ation of thire-classified tailins in 2020

Name of enterprises	Electricity saved in the month of minimum consumption (kWh)	Electricity saved in the month of highest consumption (kWh)	The sum of the lowest and highest consumption months (kWh)	Average monthly figure of the lowest and highest consumption months (kW·h)	saved electricity	(15.08.2019)	Annual	Consumed electricity (kW·h)	Annual percentage of electricity saved (%)
«O'z- HANWOO» LLC	8544	16200	24744	12372	148464		66808800	3213000	4,6
«O'Z ERAE CLIMATE CONTROL» LLC	8300	16300	24600	12300	147600	450	66420000	3686531,4	4
«O'zAuto Austem» LLC	8700	15720	24420	12210	146520		65934000	5432760	2,7
TOTAL:	25544	48220	73764	36882	442584		199162800	12332291	11,3

It can be seen from Table 7 that the annual saved electricity of the enterprises was 442584 kWh. The annual money of electricity saved is 199,162,800 soums. Due to the use of the results of energy audits in enterprises and the use of time-classified tariffs, the annual amount of total electricity saved was 11.3%.

The total annual savings of the enterprises as a result of using the results of the energy audit and the indicators of using time-classified tariffs was as follows (Table 8).

Table 8. Total annual savings of en	terprises
-------------------------------------	-----------

Name of enterprises	The cost of electricity saved in the lowest consumption month of the year (sums)	The cost of electricity saved in the month of highest consumption of the year (sums)		Annual savings cost (sums)	Use of time- classified tariffs	Total cost saved annually (sums)
«O'z-HANWOO» LLC	9035700	19635000	14335350	172024200	66808800	238833000
«O'Z ERAE CLIMATE CONTROL» LLC	8984999	9719994	9352496	112229952	66420000	178649952
«O'zAuto Austem» LLC	9090000	16659000	12874500	154494000	65934000	220428000
Total for three enterprises:	27110699	46013994	36562346	438748152	199162800	637910952

Using the results of the energy audit in the above enterprises, the effect on the 220/35/10 kV "Babur" substation was determined using time-classified tariffs. The total number of consumers is 35, and the results of which only the consumers with installed capacity of 750 kVA and above are currently received.

Due to using the results of the energy audit and the payment according to the system of time-classified tariffs:

```
"Uz-HANWOO" LLC JV (148464 kWh);
```

"OZ ERAE CLIMATE CONTROL" LLC JV (147,600 kWh);

"UzAuto Austem" LLC JV (146520 kWh) reduction was achieved.

The annual peak period of enterprises was 442,584 kWh or 0.24% of the total electricity consumption (Fig. 3).

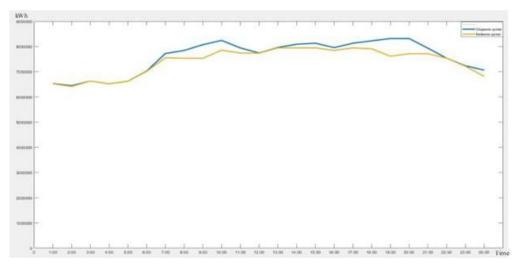


Fig. 3. Due to the use of time-classified tariffs for consumers of 220/35/10 kV "Babur" substation during morning and evening "peak" periods before and after the falling load

442 584 kWh/3 = 147 528 kWh * 30 = 4 425 840 kWh * 100% / 182 225 314 kWh 2.4% total reduction was created.

4. Conclusions

Summarizing the research results, we can draw the following conclusions:

- Annual electricity saving of "Uz-HANWOO" LLC JV is 148,464 kWh, i.e. 4.6% per year, and due to the use of the results of the energy audit for the consumed electricity and the use of time-classified tariffs, the enterprise has achieved savings of 238,833,000 sums per year.

- Annual electricity saving of "O'Z ERAE CLIMATE CONTROL" LLC JV is 147,600 kWh, i.e. 4%, and due to the use of energy audit results and the use of time-classified tariffs for consumed electricity, the enterprise saved 178,649,952 sums per year.

- Annual electricity saving of "UzAuto Austem" LLC JV is 146,520 kWh, i.e. 2.7%, and due to the use of the energy audit results and the use of time-classified tariffs for the consumed electricity, the enterprise saved 220,428,000 sums per year.

References

- 1. J. Andruszkiewicz, J. Lorenc, A. Weychan, Demand Price Elasticity of Residential Electricity Consumers with Zonal Tariff Settlement Based on Their Load Profiles, *Energies* **12**(22), 4317 (2019)
- M. Bicego, A. Farinelli, E. Grosso, D. Paolini, S.D. Ramchurn, On the distinctiveness of the electricity load profile, *Pattern Recognition* 74, 317-325 (2018)
- 3. L. Cuadra, S. Salcedo-Sanz, J. Del Ser, S. Jiménez-Fernández, Z.W. Geem, A Critical Review of Robustness in Power Grids Using Complex Networks Concepts, *Energies* **8**(9), 9211-9265 (2015)
- 4. J. Freier a, V. von Loessl, Dynamic electricity tariffs: Designing reasonable pricing schemes for private households, *Energy Economics* **112**, 106146 (2022)
- 5. H. Fan, I.F. MacGill, A.B. Sproul, Statistical analysis of drivers of residential peak electricity demand, *Energy and Buildings* **141**, 205-217 (2017)

- 6. V. Azarova, J.J. Cohen, A. Kollmann, J. Reichl, Reducing household electricity consumption during evening peak demand times: Evidence from a field experiment, *Energy Policy* **144**, 111657 (2020)
- 7. D. Kodirov, K. Muratov, O. Tursunov, E.I. Ugwu, A. Durmanov, The use of renewable energy sources in integrated energy supply systems for agriculture, *IOP Conf. Ser.: Earth Environ. Sci.* **614**, 012007 (2020)
- 8. X.M. Muratov, K.Sh. Kadirov, Differentiated tariff for electricity in Uzbekistan: background and prospects for implementation, *Journal of Informatics and Energy Problems* **1-2**, 85-88 (2014)
- 9. Kh. Muratov, K. Kadirov, D. Kodirov, Mechanisms of electrical energy management on different tariffs of industrial enterprises, *IOP Conf. Ser.: Mater. Sci. Eng.* 883, 012163 (2020)
- 10. Kh. Muratov, K.Sh. Kadirov, A.P. Kushev, Changes in tariff prices for electricity consumption and its impact on the energy system, *E3S Web of Conferences* **216**, 01176 (2020)
- 11. Kh. Muratov, K.Sh. Kadirov, A.P. Kushev, Specification of the system application for the different tariffs during the consumption time of electricity by industrial enterprises, *E3S Web of Conferences* **304**, 01006 (2021)
- 12. Kh. Muratov, A.J. Isakov, K.Sh. Kadirov, A.P. Kushev, Characteristics of application of different time rates for electricity consumed in industrial enterprises, *E3S Web of Conferences* **401**, 05049 (2023)
- 13. Kh. Muratov, A.J. Isakov, K.Sh. Kadirov, A.P. Kushev, Investments reduction on developing the generating capacity with differentiated electricity tariffs, *E3S Web of Conferences* **402**, 05019 (2023)