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Abstract. This paper studies magnetic circuits of known and developed differential transformer sensors of large 
linear motion, which refer to circuits with special structure of magnetic resistance parameters distribution of long 
ferromagnetic cores and magnetic capacitance between them. It is shown that in the known sensor the distribution 
of the working magnetic fluxes along the length of the ferromagnetic cores has a nonlinear character, as a result 
of which the dependence between the output signal in the form of the electromotive force and the input linear 
motion of the sensor also has a nonlinear character. It was found that by selecting the law of changing the working 
gap between the middle and inner cores along the length of displacement of the moving measuring winding by 
making the middle concentric core in the form of a paraboloid of rotation, a linear distribution of the working 
magnetic flows along the length of the ferromagnetic cores and linearity of the transformation characteristic of 
the differential transformer sensor of large linear displacements are achieved. 

 
 

1. Introduction 
Automation of various technological processes, requiring the use of a set of primary transducers - sensors, makes it quite 
easy to perform labor-intensive processes, save energy resources, reduce the cost of production and improve its quality 
by ensuring close to optimal modes of operation of the control and management objects, both in normal and in emergency 
situations [1,2]. Meanwhile, one of the main obstacles to this is the lack of sensors for motion parameters (displacement, 
speed, acceleration, vibration, etc.) that meet modern requirements when working in extreme operating conditions with 
increased dustiness, humidity, significant temperature fluctuations, e t.c. 
A comparative analysis of the main characteristics of the existing sensors of motion parameters shows that the most 
promising direction in solving the actual problem of more effective use of control and management systems is the use 
of differential transformer sensors (DTS), which by their properties (high reliability and stability of the characteristics 
in extreme operating conditions, as well as large output power) best satisfy the modern requirements of control and 
management systems [3, 4, 5]. However, the existing design schemes of DTS for measuring large linear displacements 
are practically unsuitable due to the instability of sensitivity in the entire measuring range and nonlinearity of the static 
characteristic. As a result, the accuracy of monitoring and control decreases, and in some cases, the system stability 
margin decreases. The need for more accurate and stable measurement of technological parameters of motion of the 
control and management systems objects puts forward the problem of developing new DTS for measuring large linear 
movements with improved information and technical characteristics, which explains the relevance of the research 
problem. 
First, we investigate a magnetic circuit of the known DTS [5], used to measure large linear displacements, in order to 
determine the pattern of change of magnetic fluxes in the cores and the magnetic tension between them depending on 
the coordinate of the moving element. The structural diagram of the DTS with the corresponding designations is shown 
in Fig. 1. 
The magnetic core of the sensor contains three coaxial cylindrical cores 1, 2, 3, with cores 1 and 3 connected at the ends 
by flanges 4 and 5 and cores 2 and 3 connected in the central part by ring jumper 6. The excitation winding consists of 
two sections 7 and 8 connected in series and in opposition. The measuring coil 9 encloses the rods 3 and can be moved 
along the magnetic coil by means of a non-magnetic rod 10 located inside the hollow rods. When an alternating voltage 
is supplied to the excitation winding, due to the constancy of the magnetic flux tubes length along the steel in the working 
range of movement of the moving part, a magnetic field along the length of the magnetic wire is formed in the sensor 
working gap. 
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Fig.1. Design diagram of the magnetic circuit of the known DTS 

 
2. Materials and Method 
As a consequence, the output e.d.s. varies linearly as a function of the moving part movement, and the phase is constant 
over the moving part movement range. The phase of the output e.d.s. is reversed at zero crossing. To eliminate the 
influence of short-circuited body circuits on the sensor's amplitude-phase characteristics, the sensor is cut in the middle 
part along the generatrix. "Zero" of the sensor is adjusted by turning the covers, which changes the complex magnetic 
resistance of the left and right relative to the transverse axis of symmetry parts of the magnetic wire. The cylindrical 
body of the sensor is a shield for the magnetic fields acting in the transverse direction.  
For a magnetic field acting perpendicular to the plane of the coils of the measuring coil, the presence of the gap 
significantly increases the resistance. In this case, the external magnetic flux is short-circuited mainly along the case. 
It should be noted that in contrast to magnetic circuits of sensors with П-shaped magnetic cores, where the length of 
magnetic field lines along the steel throughout the length of the working gap is unequal, in the considered magnetic 
circuit the length of magnetic field lines along the steel throughout the length of the working gap is the same. For this 
reason, the former are called magnetic circuits with the usual structure of resistance and conductivity parameter 
distribution, and the latter, to which the investigated magnetic circuit belongs, are called magnetic circuits with the 
special structure of resistance and conductivity parameter distribution. Magnetic circuits with distributed parameters of 
all existing sensors belong either to the first group or to the second group of magnetic circuits.  
In theoretical studies of magnetic circuits, we neglect the nonlinearity of steel magnetic resistance characteristics, convex 
fluxes at the ends of the magnetic circuit, in the area of the moving part, the measuring winding, and its longitudinal 
size. These assumptions do not introduce perceptible inaccuracies, but greatly simplify the calculation.  
To determine the current values of magnetic voltage 𝑈𝑈𝜇𝜇𝜇𝜇 and magnetic flux 𝑄𝑄𝜇𝜇𝜇𝜇, created along a long magnetic circuit 
by two sections of the field winding, the coordinate x of the moving part of the considered core sections 2 and 3 is most 
convenient to count from the central part of the magnetic circuit. Since the magnetic system is symmetrical relative to 
the vertical axis passing through the central part of the magnetic core, it is enough to calculate the magnetic circuit for 
one, for example, the left half from the central part of the magnetic core. The number in the indexes of values and 
parameters means that they refer to the corresponding core.  

 
3. Results and Discussions 
Changes of magnetic flux and magnetic voltage on the elementary section of magnetic circuit dx (Fig.2), created by the 
left section of the field winding, are found by making up the following differential equations on the basis of Kirchhoff's 
laws [6, 7, 8]: 

𝑄𝑄𝜇𝜇2𝜇𝜇
′ = −𝑈𝑈𝜇𝜇𝜇𝜇𝐶𝐶𝜇𝜇п,           (1) 𝑄𝑄𝜇𝜇3𝜇𝜇

′ = 𝑈𝑈𝜇𝜇𝜇𝜇𝐶𝐶𝜇𝜇п,                (2) 
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left section of the field winding, are found by making up the following differential equations on the basis of Kirchhoff's 
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𝑄𝑄𝜇𝜇2𝜇𝜇
′ = −𝑈𝑈𝜇𝜇𝜇𝜇𝐶𝐶𝜇𝜇п,           (1) 𝑄𝑄𝜇𝜇3𝜇𝜇

′ = 𝑈𝑈𝜇𝜇𝜇𝜇𝐶𝐶𝜇𝜇п,                (2) 

𝑈𝑈𝜇𝜇𝜇𝜇
′ = (𝑍𝑍𝜇𝜇3п𝑄𝑄𝜇𝜇3𝜇𝜇 − 𝑍𝑍𝜇𝜇2п𝑄𝑄𝜇𝜇2𝜇𝜇),                                                      (3) 

 
where 𝑍𝑍𝜇𝜇2п = 1

𝜇𝜇𝜇𝜇02𝜋𝜋𝑟𝑟2ℎ2
, 𝑍𝑍𝜇𝜇3п = 1

𝜇𝜇𝜇𝜇02𝜋𝜋𝑟𝑟3ℎ3
, 𝐶𝐶𝜇𝜇п = 𝜇𝜇0

𝜋𝜋(𝑟𝑟2+𝑟𝑟3)
𝛿𝛿р

   - values of magnetic resistances of cores 2,3 and magnetic 

conductivity of working gap δ_r between them, per unit length of magnetic circuit; 𝜇𝜇, 𝜇𝜇0 = 4𝜋𝜋 ∙ 10−7  𝐻𝐻 𝑚𝑚⁄ - relative 
magnetic permeability of steel and magnetic constant respectively; 𝑟𝑟2, 𝑟𝑟3 , ℎ2, ℎ3- radii and thickness of cores 2 and 3 
respectively. 

  
                                          a)                                                                                                             b) 
Fig.2. Design diagram (a) of the left half of the magnetic circuit and the scheme of its elementary section dx (b) of the known DTS 
 
The following equality is true for the considered magnetic circuit [6]: 

 
𝑄𝑄𝜇𝜇3𝜇𝜇 + 𝑄𝑄𝜇𝜇2𝜇𝜇 = 𝑄𝑄𝜇𝜇м,                                                          (4) 

here 𝑄𝑄𝜇𝜇м is the total magnetic flux created by one section of the excitation winding (we neglect the scattering fluxes 
from the surface of core 2 to core 1 through gap δs3 and from the end parts of core 2 to flanges 4,5 through air gaps δs1 
due to small values of magnetic conductivities of these gaps). 
Differentiating (3) and inserting (1) and (2) into it, we obtain the following homogeneous linear differential equation of 
the second order: 

𝑈𝑈𝜇𝜇𝜇𝜇
′′ = (𝑍𝑍𝜇𝜇2п + 𝑍𝑍𝜇𝜇3п)𝐶𝐶𝜇𝜇п𝑈𝑈𝜇𝜇𝜇𝜇 .                                                    (5) 

 
The general solution of the differential equation (5) has the following form [9]: 
 

𝑈𝑈𝜇𝜇𝜇𝜇 = 𝐴𝐴1𝑒𝑒𝛾𝛾𝜇𝜇 + 𝐴𝐴2𝑒𝑒−𝛾𝛾𝜇𝜇,                                                        (6) 

where 𝛾𝛾 = √(𝑍𝑍𝜇𝜇2п + 𝑍𝑍𝜇𝜇3п)𝐶𝐶𝜇𝜇пis the value of the coefficient of magnetic flux propagation through the magnetic circuit, 

[1 𝑚𝑚⁄ ]; 𝐴𝐴1, 𝐴𝐴2- integration constants; 𝑍𝑍𝜇𝜇п∑ = 𝑍𝑍𝜇𝜇2п + 𝑍𝑍𝜇𝜇3п, [𝐻𝐻−1 ∙ 𝑚𝑚−1]. 
 

From (4) we find the magnetic flux 𝑄𝑄𝜇𝜇2𝜇𝜇:  
𝑄𝑄𝜇𝜇2𝜇𝜇 = 𝑄𝑄𝜇𝜇м − 𝑄𝑄𝜇𝜇3𝜇𝜇.                                                                     (7) 

Substituting (7) into (3), from there we find the value of magnetic flux 𝑄𝑄𝜇𝜇3𝜇𝜇: 
 

𝑄𝑄𝜇𝜇3𝜇𝜇 = − 1
𝑍𝑍𝜇𝜇п

𝑈𝑈𝜇𝜇𝜇𝜇
′ +

𝑍𝑍𝜇𝜇2п
𝑍𝑍𝜇𝜇п∑

𝑄𝑄𝜇𝜇м = 

= − 𝛾𝛾
𝑍𝑍𝜇𝜇п

А1𝑒𝑒𝛾𝛾𝜇𝜇 + 𝛾𝛾
𝑍𝑍𝜇𝜇п

А2𝑒𝑒−𝛾𝛾𝜇𝜇 + 𝑍𝑍𝜇𝜇2п
𝑍𝑍𝜇𝜇п∑

𝑄𝑄𝜇𝜇м.                                                  (8) 

The integration constants 𝐴𝐴1 and 𝐴𝐴2 are determined from the following boundary (boundary) conditions: 

𝑄𝑄𝜇𝜇3𝜇𝜇 |
 
 

𝑥𝑥 = 0
= 0;        𝑄𝑄𝜇𝜇3𝜇𝜇 |

 
 

𝑥𝑥 = 𝑋𝑋м
= 𝑄𝑄𝜇𝜇м.                                                  (9) 

Substituting in (9) the boundary values of 𝑄𝑄𝜇𝜇3𝜇𝜇 by (8), we obtain the following algebraic equations: 
− 𝛾𝛾

𝑍𝑍𝜇𝜇п∑
А1 + 𝛾𝛾

𝑍𝑍𝜇𝜇п∑
А2 = − 𝑍𝑍𝜇𝜇2п

𝑍𝑍𝜇𝜇п∑
𝑄𝑄𝜇𝜇м,                                                        (10) 

− 𝛾𝛾
𝑍𝑍𝜇𝜇п∑

𝑒𝑒𝛾𝛾𝑋𝑋мА1 + 𝛾𝛾
𝑍𝑍𝜇𝜇п∑

𝑒𝑒−𝛾𝛾𝑋𝑋мА2 = 𝑍𝑍𝜇𝜇3п
𝑍𝑍𝜇𝜇п∑

𝑄𝑄𝜇𝜇м.                                              (11) 

Solving together equations (10) and (11), we obtain the following values of integration constants: 
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𝐴𝐴1 = − 𝑍𝑍𝜇𝜇2п𝑄𝑄𝜇𝜇м
2𝛾𝛾𝛾𝛾ℎ(𝛾𝛾𝑋𝑋м) 𝑒𝑒−𝛾𝛾𝑋𝑋м − 𝑍𝑍𝜇𝜇3п𝑄𝑄𝜇𝜇м

2𝛾𝛾𝛾𝛾ℎ(𝛾𝛾𝑋𝑋м),                                                      (12) 

𝐴𝐴2 = − 𝑍𝑍𝜇𝜇2п𝑄𝑄𝜇𝜇м
2𝛾𝛾𝛾𝛾ℎ(𝛾𝛾𝑋𝑋м) 𝑒𝑒𝛾𝛾𝑋𝑋м − 𝑍𝑍𝜇𝜇3п𝑄𝑄𝜇𝜇м

2𝛾𝛾𝛾𝛾ℎ(𝛾𝛾𝑋𝑋м).                                                      (13) 
Substituting the found values of 𝐴𝐴1 and 𝐴𝐴2 into expressions (6) and (8), we finally have the following: 

𝑈𝑈𝜇𝜇𝜇𝜇 = − 𝑄𝑄𝜇𝜇м
𝛾𝛾𝛾𝛾ℎ(𝛾𝛾𝑋𝑋м) {𝑍𝑍𝜇𝜇2п𝑐𝑐ℎ[𝛾𝛾(𝑋𝑋м − 𝑥𝑥)] + 𝑍𝑍𝜇𝜇3п𝑐𝑐ℎ(𝛾𝛾𝑥𝑥)},                                       (14) 

𝑄𝑄𝜇𝜇3𝜇𝜇(1) = 𝑍𝑍𝜇𝜇2п𝑄𝑄𝜇𝜇м
𝑍𝑍𝜇𝜇п∑

− 𝑄𝑄𝜇𝜇м
𝑍𝑍𝜇𝜇п∑𝛾𝛾ℎ(𝛾𝛾𝑋𝑋м) {𝑍𝑍𝜇𝜇2п𝑠𝑠ℎ[𝛾𝛾(𝑋𝑋м − 𝑥𝑥)] − 𝑍𝑍𝜇𝜇3п𝑠𝑠ℎ(𝛾𝛾𝑥𝑥)}.                         (15) 

At 𝑍𝑍𝜇𝜇2п = 𝑍𝑍𝜇𝜇3п (14) and (15) takes the following form: 
𝑈𝑈𝜇𝜇𝜇𝜇 = − 𝑄𝑄𝜇𝜇м𝑍𝑍𝜇𝜇п∑

𝛾𝛾𝛾𝛾ℎ(𝛾𝛾𝑋𝑋м) {𝑐𝑐ℎ[𝛾𝛾(𝑋𝑋м − 𝑥𝑥)] + 𝑐𝑐ℎ(𝛾𝛾𝑥𝑥)},                                            (16) 

𝑄𝑄𝜇𝜇3𝜇𝜇(2) =
𝑄𝑄𝜇𝜇м

2 −
𝑄𝑄𝜇𝜇м

2𝑠𝑠ℎ(𝛾𝛾𝑋𝑋м) {𝑠𝑠ℎ[𝛾𝛾(𝑋𝑋м − 𝑥𝑥)] − 𝑠𝑠ℎ(𝛾𝛾𝑥𝑥)} = 

= 𝑄𝑄𝜇𝜇м
2 − 𝑄𝑄𝜇𝜇м𝑐𝑐ℎ(0,5𝛾𝛾𝑋𝑋м)

𝛾𝛾ℎ(𝛾𝛾𝑋𝑋м) 𝑠𝑠ℎ[𝛾𝛾(0,5𝑋𝑋м − 𝑥𝑥)].                                               (17) 
The presence of hyperbolic functions in expressions (15) and (17) already means that the dependence 𝑄𝑄𝜇𝜇3𝜇𝜇 = 𝑓𝑓(𝑥𝑥) has 
a nonlinear character. 
In order to graph a function 𝑄𝑄𝜇𝜇3𝜇𝜇 = 𝑓𝑓(𝑥𝑥) and 𝑈𝑈𝜇𝜇𝜇𝜇 = 𝑓𝑓(𝑥𝑥) for ease of analysis, go to relative units:  

𝑄𝑄𝜇𝜇3𝜇𝜇(1)
∗ = 𝑄𝑄𝜇𝜇3𝑥𝑥

𝑄𝑄𝜇𝜇3𝑥𝑥=𝑋𝑋м
= 𝑍𝑍𝜇𝜇2п

𝑍𝑍𝜇𝜇п∑
− 1

𝑍𝑍𝜇𝜇п∑𝛾𝛾ℎ𝛽𝛽 {𝑍𝑍𝜇𝜇2п𝑠𝑠ℎ[𝛽𝛽(1 − 𝑥𝑥∗)] − 𝑍𝑍𝜇𝜇3п𝑠𝑠ℎ(𝛽𝛽𝑥𝑥∗)},                 (18) 

𝑄𝑄𝜇𝜇3𝜇𝜇(2)
∗ = 1

2 − 𝑐𝑐ℎ(0,5𝛽𝛽)
𝛾𝛾ℎ(𝛽𝛽) 𝑠𝑠ℎ[𝛽𝛽(0,5 − 𝑥𝑥∗)],                                                 (19) 

𝑈𝑈𝜇𝜇𝜇𝜇
∗ = 𝑐𝑐ℎ[𝛽𝛽(0,5−𝜇𝜇∗)]

𝑐𝑐ℎ(0,5𝛽𝛽) ,                                                            (20) 
here 𝛽𝛽 = 𝛾𝛾𝑋𝑋м, [−] is the coefficient of magnetic field attenuation in the magnetic circuit; 𝑥𝑥∗ = 𝑥𝑥 𝑋𝑋м⁄  is the coordinate 
value in relative units. 
The function graphs 𝑄𝑄𝜇𝜇3𝜇𝜇

∗ = 𝑓𝑓(𝑥𝑥∗) and 𝑈𝑈𝜇𝜇𝜇𝜇
∗ = 𝑓𝑓(𝑥𝑥∗) are plotted at the following values of design and magnetic 

parameters of the investigated magnetic circuit: 
𝑋𝑋м = 0,1 𝑚𝑚; ℎ = 0,005 𝑚𝑚; 𝛿𝛿р = 0,005 𝑚𝑚; 𝑟𝑟2 = 0,02 𝑚𝑚; 𝑟𝑟3 = 0,03 𝑚𝑚; 𝜇𝜇 = 1000; 𝑍𝑍𝜇𝜇2п = 1

𝜇𝜇𝜇𝜇02𝜋𝜋𝑟𝑟2ℎ = 8,5 ∙

105 [𝐻𝐻−1 ∙ 𝑚𝑚−1]; 𝑍𝑍𝜇𝜇3п = 1
𝜇𝜇𝜇𝜇02𝜋𝜋𝑟𝑟3ℎ = 12,7 ∙ 105 [𝐻𝐻−1 ∙ 𝑚𝑚−1]; 𝛾𝛾 = √(𝑍𝑍𝜇𝜇2п + 𝑍𝑍𝜇𝜇3п)𝐶𝐶𝜇𝜇п = 9,1 [𝑚𝑚−1]; 𝛽𝛽 = 𝛾𝛾𝑋𝑋м =

0,91.  
Substituting the parameter values in (17), (18) and using the corresponding theorems for hyperbolic functions [9], we 
obtain the following: 

𝑄𝑄𝜇𝜇3𝜇𝜇(1)
∗ = 0,4 + 27,96𝑠𝑠ℎ(0,91𝑥𝑥∗) − 9,91𝑠𝑠ℎ(0,91𝑥𝑥∗),                                   (21) 

𝑄𝑄𝜇𝜇3𝜇𝜇(2)
∗ = 0,5 − 1,06𝑠𝑠ℎ[0,91(0,5 − 𝑥𝑥∗)].                                             (22) 

𝑈𝑈𝜇𝜇𝜇𝜇
∗ = 0,91𝑐𝑐ℎ[0,91(0,5 − 𝑥𝑥∗)].                                                    (23) 

 
The graphs based on (22) and (23) show (Fig. 3 ), that the operating magnetic flux 𝑄𝑄𝜇𝜇3𝜇𝜇 is non-linear depending on the 
coordinate of the moving part of the sensor and the degree of non-linearity of the function 𝑄𝑄𝜇𝜇3𝜇𝜇

∗ = 𝑓𝑓(𝑥𝑥∗)increases with 
increasing magnetic field attenuation coefficient in the magnetic circuit β, and the magnetic voltage between the cores 
is not constant over the moving part coordinate and the degree of non-linearity of the function 𝑈𝑈𝜇𝜇𝜇𝜇

∗ = 𝑓𝑓(𝑥𝑥∗) also increases 
with increasing magnetic field attenuation coefficient in the magnetic circuit β. 
Let's estimate the degree of nonlinearity of the magnetic flux distribution 𝑄𝑄𝜇𝜇3𝜇𝜇

∗   along the length of the cores by the 
following formula [7]: 
 

𝜀𝜀 = [𝑄𝑄𝜇𝜇3𝑥𝑥∗ (𝜇𝜇1∗)−𝑄𝑄𝜇𝜇3𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥∗ 𝜇𝜇1∗]+[𝑄𝑄𝜇𝜇3𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥∗ 𝜇𝜇2∗−𝑄𝑄𝜇𝜇3𝑥𝑥∗ (𝜇𝜇2∗)]
2 ∙ 100 %                                        (24) 

In expression (24), the quantities 𝑥𝑥1
∗, 𝑥𝑥2

∗ are found as roots of the equation 
 

[𝑄𝑄𝜇𝜇3𝜇𝜇
∗ (𝑥𝑥∗)]′ = 𝑄𝑄𝜇𝜇3𝜇𝜇𝑥𝑥𝑥𝑥𝜇𝜇

∗ = 1,                                                                 (25) 
 
corresponding to the maximum values of positive and negative difference 𝑄𝑄𝜇𝜇3𝜇𝜇

∗ (𝑥𝑥𝑘𝑘
∗ ) − 𝑄𝑄𝜇𝜇3𝜇𝜇𝑥𝑥𝑥𝑥𝜇𝜇

∗ 𝑥𝑥𝑘𝑘
∗ , where k=1,2. 
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𝐴𝐴1 = − 𝑍𝑍𝜇𝜇2п𝑄𝑄𝜇𝜇м
2𝛾𝛾𝛾𝛾ℎ(𝛾𝛾𝑋𝑋м) 𝑒𝑒−𝛾𝛾𝑋𝑋м − 𝑍𝑍𝜇𝜇3п𝑄𝑄𝜇𝜇м

2𝛾𝛾𝛾𝛾ℎ(𝛾𝛾𝑋𝑋м),                                                      (12) 

𝐴𝐴2 = − 𝑍𝑍𝜇𝜇2п𝑄𝑄𝜇𝜇м
2𝛾𝛾𝛾𝛾ℎ(𝛾𝛾𝑋𝑋м) 𝑒𝑒𝛾𝛾𝑋𝑋м − 𝑍𝑍𝜇𝜇3п𝑄𝑄𝜇𝜇м

2𝛾𝛾𝛾𝛾ℎ(𝛾𝛾𝑋𝑋м).                                                      (13) 
Substituting the found values of 𝐴𝐴1 and 𝐴𝐴2 into expressions (6) and (8), we finally have the following: 

𝑈𝑈𝜇𝜇𝜇𝜇 = − 𝑄𝑄𝜇𝜇м
𝛾𝛾𝛾𝛾ℎ(𝛾𝛾𝑋𝑋м) {𝑍𝑍𝜇𝜇2п𝑐𝑐ℎ[𝛾𝛾(𝑋𝑋м − 𝑥𝑥)] + 𝑍𝑍𝜇𝜇3п𝑐𝑐ℎ(𝛾𝛾𝑥𝑥)},                                       (14) 

𝑄𝑄𝜇𝜇3𝜇𝜇(1) = 𝑍𝑍𝜇𝜇2п𝑄𝑄𝜇𝜇м
𝑍𝑍𝜇𝜇п∑

− 𝑄𝑄𝜇𝜇м
𝑍𝑍𝜇𝜇п∑𝛾𝛾ℎ(𝛾𝛾𝑋𝑋м) {𝑍𝑍𝜇𝜇2п𝑠𝑠ℎ[𝛾𝛾(𝑋𝑋м − 𝑥𝑥)] − 𝑍𝑍𝜇𝜇3п𝑠𝑠ℎ(𝛾𝛾𝑥𝑥)}.                         (15) 

At 𝑍𝑍𝜇𝜇2п = 𝑍𝑍𝜇𝜇3п (14) and (15) takes the following form: 
𝑈𝑈𝜇𝜇𝜇𝜇 = − 𝑄𝑄𝜇𝜇м𝑍𝑍𝜇𝜇п∑

𝛾𝛾𝛾𝛾ℎ(𝛾𝛾𝑋𝑋м) {𝑐𝑐ℎ[𝛾𝛾(𝑋𝑋м − 𝑥𝑥)] + 𝑐𝑐ℎ(𝛾𝛾𝑥𝑥)},                                            (16) 

𝑄𝑄𝜇𝜇3𝜇𝜇(2) =
𝑄𝑄𝜇𝜇м

2 −
𝑄𝑄𝜇𝜇м

2𝑠𝑠ℎ(𝛾𝛾𝑋𝑋м) {𝑠𝑠ℎ[𝛾𝛾(𝑋𝑋м − 𝑥𝑥)] − 𝑠𝑠ℎ(𝛾𝛾𝑥𝑥)} = 

= 𝑄𝑄𝜇𝜇м
2 − 𝑄𝑄𝜇𝜇м𝑐𝑐ℎ(0,5𝛾𝛾𝑋𝑋м)

𝛾𝛾ℎ(𝛾𝛾𝑋𝑋м) 𝑠𝑠ℎ[𝛾𝛾(0,5𝑋𝑋м − 𝑥𝑥)].                                               (17) 
The presence of hyperbolic functions in expressions (15) and (17) already means that the dependence 𝑄𝑄𝜇𝜇3𝜇𝜇 = 𝑓𝑓(𝑥𝑥) has 
a nonlinear character. 
In order to graph a function 𝑄𝑄𝜇𝜇3𝜇𝜇 = 𝑓𝑓(𝑥𝑥) and 𝑈𝑈𝜇𝜇𝜇𝜇 = 𝑓𝑓(𝑥𝑥) for ease of analysis, go to relative units:  

𝑄𝑄𝜇𝜇3𝜇𝜇(1)
∗ = 𝑄𝑄𝜇𝜇3𝑥𝑥

𝑄𝑄𝜇𝜇3𝑥𝑥=𝑋𝑋м
= 𝑍𝑍𝜇𝜇2п

𝑍𝑍𝜇𝜇п∑
− 1

𝑍𝑍𝜇𝜇п∑𝛾𝛾ℎ𝛽𝛽 {𝑍𝑍𝜇𝜇2п𝑠𝑠ℎ[𝛽𝛽(1 − 𝑥𝑥∗)] − 𝑍𝑍𝜇𝜇3п𝑠𝑠ℎ(𝛽𝛽𝑥𝑥∗)},                 (18) 

𝑄𝑄𝜇𝜇3𝜇𝜇(2)
∗ = 1

2 − 𝑐𝑐ℎ(0,5𝛽𝛽)
𝛾𝛾ℎ(𝛽𝛽) 𝑠𝑠ℎ[𝛽𝛽(0,5 − 𝑥𝑥∗)],                                                 (19) 

𝑈𝑈𝜇𝜇𝜇𝜇
∗ = 𝑐𝑐ℎ[𝛽𝛽(0,5−𝜇𝜇∗)]

𝑐𝑐ℎ(0,5𝛽𝛽) ,                                                            (20) 
here 𝛽𝛽 = 𝛾𝛾𝑋𝑋м, [−] is the coefficient of magnetic field attenuation in the magnetic circuit; 𝑥𝑥∗ = 𝑥𝑥 𝑋𝑋м⁄  is the coordinate 
value in relative units. 
The function graphs 𝑄𝑄𝜇𝜇3𝜇𝜇

∗ = 𝑓𝑓(𝑥𝑥∗) and 𝑈𝑈𝜇𝜇𝜇𝜇
∗ = 𝑓𝑓(𝑥𝑥∗) are plotted at the following values of design and magnetic 

parameters of the investigated magnetic circuit: 
𝑋𝑋м = 0,1 𝑚𝑚; ℎ = 0,005 𝑚𝑚; 𝛿𝛿р = 0,005 𝑚𝑚; 𝑟𝑟2 = 0,02 𝑚𝑚; 𝑟𝑟3 = 0,03 𝑚𝑚; 𝜇𝜇 = 1000; 𝑍𝑍𝜇𝜇2п = 1

𝜇𝜇𝜇𝜇02𝜋𝜋𝑟𝑟2ℎ = 8,5 ∙

105 [𝐻𝐻−1 ∙ 𝑚𝑚−1]; 𝑍𝑍𝜇𝜇3п = 1
𝜇𝜇𝜇𝜇02𝜋𝜋𝑟𝑟3ℎ = 12,7 ∙ 105 [𝐻𝐻−1 ∙ 𝑚𝑚−1]; 𝛾𝛾 = √(𝑍𝑍𝜇𝜇2п + 𝑍𝑍𝜇𝜇3п)𝐶𝐶𝜇𝜇п = 9,1 [𝑚𝑚−1]; 𝛽𝛽 = 𝛾𝛾𝑋𝑋м =

0,91.  
Substituting the parameter values in (17), (18) and using the corresponding theorems for hyperbolic functions [9], we 
obtain the following: 

𝑄𝑄𝜇𝜇3𝜇𝜇(1)
∗ = 0,4 + 27,96𝑠𝑠ℎ(0,91𝑥𝑥∗) − 9,91𝑠𝑠ℎ(0,91𝑥𝑥∗),                                   (21) 

𝑄𝑄𝜇𝜇3𝜇𝜇(2)
∗ = 0,5 − 1,06𝑠𝑠ℎ[0,91(0,5 − 𝑥𝑥∗)].                                             (22) 

𝑈𝑈𝜇𝜇𝜇𝜇
∗ = 0,91𝑐𝑐ℎ[0,91(0,5 − 𝑥𝑥∗)].                                                    (23) 

 
The graphs based on (22) and (23) show (Fig. 3 ), that the operating magnetic flux 𝑄𝑄𝜇𝜇3𝜇𝜇 is non-linear depending on the 
coordinate of the moving part of the sensor and the degree of non-linearity of the function 𝑄𝑄𝜇𝜇3𝜇𝜇

∗ = 𝑓𝑓(𝑥𝑥∗)increases with 
increasing magnetic field attenuation coefficient in the magnetic circuit β, and the magnetic voltage between the cores 
is not constant over the moving part coordinate and the degree of non-linearity of the function 𝑈𝑈𝜇𝜇𝜇𝜇

∗ = 𝑓𝑓(𝑥𝑥∗) also increases 
with increasing magnetic field attenuation coefficient in the magnetic circuit β. 
Let's estimate the degree of nonlinearity of the magnetic flux distribution 𝑄𝑄𝜇𝜇3𝜇𝜇

∗   along the length of the cores by the 
following formula [7]: 
 

𝜀𝜀 = [𝑄𝑄𝜇𝜇3𝑥𝑥∗ (𝜇𝜇1∗)−𝑄𝑄𝜇𝜇3𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥∗ 𝜇𝜇1∗]+[𝑄𝑄𝜇𝜇3𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥∗ 𝜇𝜇2∗−𝑄𝑄𝜇𝜇3𝑥𝑥∗ (𝜇𝜇2∗)]
2 ∙ 100 %                                        (24) 

In expression (24), the quantities 𝑥𝑥1
∗, 𝑥𝑥2

∗ are found as roots of the equation 
 

[𝑄𝑄𝜇𝜇3𝜇𝜇
∗ (𝑥𝑥∗)]′ = 𝑄𝑄𝜇𝜇3𝜇𝜇𝑥𝑥𝑥𝑥𝜇𝜇

∗ = 1,                                                                 (25) 
 
corresponding to the maximum values of positive and negative difference 𝑄𝑄𝜇𝜇3𝜇𝜇

∗ (𝑥𝑥𝑘𝑘
∗ ) − 𝑄𝑄𝜇𝜇3𝜇𝜇𝑥𝑥𝑥𝑥𝜇𝜇

∗ 𝑥𝑥𝑘𝑘
∗ , where k=1,2. 

Degrees of nonlinearity of magnetic flux distribution 𝑄𝑄𝜇𝜇3𝑥𝑥
∗  along the length of the cores for the cases 𝑍𝑍𝜇𝜇2п ≠ 𝑍𝑍𝜇𝜇3п and 

𝑍𝑍𝜇𝜇2п = 𝑍𝑍𝜇𝜇3п, respectively, calculated by formula (24) for the above magnetic circuit parameters, for the prototype are 
equal: 

 
𝜀𝜀1 = 5,42 % and 𝜀𝜀2 = 2,73 %.                                                            (26) 

 

  
Fig. 3. Plots of the dependence of the working magnetic flux 𝑄𝑄𝜇𝜇3𝑥𝑥 on the coordinate of the moving part x at different values of the 

magnetic field attenuation coefficient in the magnetic circuit β 
 
Now let's obtain analytical expressions for the working magnetic fluxes in the cores and magnetic stresses between them, 
as well as the static characteristic of the developed DTS [10]. The structural diagram of the sensor with corresponding 
designations is shown in Fig. 4. The same assumptions are used here as in calculations of the magnetic circuit of the 
known sensor. 

 
Fig. 4. Design diagram of the magnetic circuit of the developed transformer large linear displacement sensor 
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In order to make the displacement sensor with long cores, along the length of which the moving element in the form of 
a concentrated measuring winding is moving, have a linear static characteristic, it is required a linear distribution of 
operating magnetic flux in the range of movement of this measuring winding [7].  
In the developed sensor this is achieved by selecting the law of variation of the working gap between the middle and 
inner cores on the length of displacement of the moving measuring winding by making the middle concentric core in the 
form of a paraboloid of rotation. In order to determine the law of variation of the working gap let us make and solve 
differential equations for the elementary section dx of the magnetic circuit, considering a linear value of magnetic 
conductivity of the working gap along the length of the cores to be variable, i.e. 𝐶𝐶𝜇𝜇п𝑥𝑥 = 𝑣𝑣𝑣𝑣𝑣𝑣. 
The design diagram of the left half of the magnetic core of the developed DTS is shown in Fig. 5, a, and the substitution 
diagram of the elementary section dx of the magnetic circuit in Fig. 5, b, which differs from the substitution diagram of 
the elementary section dx of the magnetic circuit of the prototype (Fig. 2, b) only 𝐶𝐶𝜇𝜇п𝑥𝑥 instead of 𝐶𝐶𝜇𝜇п. 
It should be noted that in the developed sensor to create the same conditions for the passage of magnetic field lines of 
force across the middle and inner cores the following ratio is required: 
It should be noted that in the developed sensor, in order to create the same conditions for the passage of magnetic field 
lines along the middle and inner cores, the following ratio is required: 

𝑍𝑍𝜇𝜇2п = 1
𝜇𝜇𝜇𝜇02𝜋𝜋𝑟𝑟2ℎ2

= 𝑍𝑍𝜇𝜇3п = 1
𝜇𝜇𝜇𝜇02𝜋𝜋𝑟𝑟3ℎ3

.                                                (27) 
 

From there:                                                                                    ℎ2
ℎ3

= 𝑟𝑟3
𝑟𝑟2

.                                                                  (28) 
  

Given the relation (28) we can assume that 𝑍𝑍𝜇𝜇2п = 𝑍𝑍𝜇𝜇3п = 𝑍𝑍𝜇𝜇п. 
The changes of magnetic flux and magnetic voltage on the elementary section of magnetic circuit dx (Fig. 5), created by 
the left section of the excitation coil, are found by composing the following differential equations on the basis of 
Kirchhoff's laws [8]: 

𝑄𝑄𝜇𝜇2𝑥𝑥
′ = −𝑈𝑈𝜇𝜇𝑥𝑥𝐶𝐶𝜇𝜇п𝑥𝑥,           (29) 𝑄𝑄𝜇𝜇3𝑥𝑥

′ = 𝑈𝑈𝜇𝜇𝑥𝑥𝐶𝐶𝜇𝜇п𝑥𝑥,               (30) 
 

 
 

Fig. 5. Design diagram (a) of the left half of the magnetic circuit and the substitution diagram of its elementary section 𝑑𝑑𝑥𝑥 (b) of the 
developed DTS 

 
𝑈𝑈𝜇𝜇𝑥𝑥

′ = 𝑍𝑍𝜇𝜇п(𝑄𝑄𝜇𝜇3𝑥𝑥 − 𝑄𝑄𝜇𝜇2𝑥𝑥).                                    (31) 
 
The condition of linearity of the distribution of the working magnetic flux 𝑄𝑄𝜇𝜇3𝑥𝑥 = 𝑘𝑘𝑥𝑥 + 𝑏𝑏 on the coordinate x is equality 
to zero of the second derivative of this function on x, i.e. 𝑄𝑄𝜇𝜇3𝑥𝑥

′′ = 0, (32). Given this condition, equation (30) takes the 
following form: 

𝑄𝑄𝜇𝜇3𝑥𝑥
′′ = (𝑈𝑈𝜇𝜇𝑥𝑥𝐶𝐶𝜇𝜇п𝑥𝑥)′ = 0.                                    (33) 

By integrating (33), we obtain the following: 
𝑈𝑈𝜇𝜇𝑥𝑥𝐶𝐶𝜇𝜇п𝑥𝑥 = 𝐴𝐴1.                                             (34) 

Differentiating (31), substituting (29), (30), and taking into account (34), we have the following differential equation: 
𝑈𝑈𝜇𝜇𝑥𝑥

′′ = 2𝑈𝑈𝜇𝜇𝑥𝑥𝐶𝐶𝜇𝜇п𝑥𝑥 = 2𝐴𝐴1.                                   (35) 
By integrating (35), we obtain: 

𝑈𝑈𝜇𝜇𝑥𝑥 = 𝑍𝑍𝜇𝜇п 𝐴𝐴1𝑥𝑥2 + 𝐴𝐴2𝑥𝑥 + 𝐴𝐴3.                               (36) 
The unit value of the magnetic conductivity of the working gap is determined from (34) with regard to (36) as: 
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In order to make the displacement sensor with long cores, along the length of which the moving element in the form of 
a concentrated measuring winding is moving, have a linear static characteristic, it is required a linear distribution of 
operating magnetic flux in the range of movement of this measuring winding [7].  
In the developed sensor this is achieved by selecting the law of variation of the working gap between the middle and 
inner cores on the length of displacement of the moving measuring winding by making the middle concentric core in the 
form of a paraboloid of rotation. In order to determine the law of variation of the working gap let us make and solve 
differential equations for the elementary section dx of the magnetic circuit, considering a linear value of magnetic 
conductivity of the working gap along the length of the cores to be variable, i.e. 𝐶𝐶𝜇𝜇п𝑥𝑥 = 𝑣𝑣𝑣𝑣𝑣𝑣. 
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𝑍𝑍𝜇𝜇2п = 1
𝜇𝜇𝜇𝜇02𝜋𝜋𝑟𝑟2ℎ2

= 𝑍𝑍𝜇𝜇3п = 1
𝜇𝜇𝜇𝜇02𝜋𝜋𝑟𝑟3ℎ3

.                                                (27) 
 

From there:                                                                                    ℎ2
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Given the relation (28) we can assume that 𝑍𝑍𝜇𝜇2п = 𝑍𝑍𝜇𝜇3п = 𝑍𝑍𝜇𝜇п. 
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Fig. 5. Design diagram (a) of the left half of the magnetic circuit and the substitution diagram of its elementary section 𝑑𝑑𝑥𝑥 (b) of the 
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𝑈𝑈𝜇𝜇𝑥𝑥

′ = 𝑍𝑍𝜇𝜇п(𝑄𝑄𝜇𝜇3𝑥𝑥 − 𝑄𝑄𝜇𝜇2𝑥𝑥).                                    (31) 
 
The condition of linearity of the distribution of the working magnetic flux 𝑄𝑄𝜇𝜇3𝑥𝑥 = 𝑘𝑘𝑥𝑥 + 𝑏𝑏 on the coordinate x is equality 
to zero of the second derivative of this function on x, i.e. 𝑄𝑄𝜇𝜇3𝑥𝑥

′′ = 0, (32). Given this condition, equation (30) takes the 
following form: 

𝑄𝑄𝜇𝜇3𝑥𝑥
′′ = (𝑈𝑈𝜇𝜇𝑥𝑥𝐶𝐶𝜇𝜇п𝑥𝑥)′ = 0.                                    (33) 

By integrating (33), we obtain the following: 
𝑈𝑈𝜇𝜇𝑥𝑥𝐶𝐶𝜇𝜇п𝑥𝑥 = 𝐴𝐴1.                                             (34) 

Differentiating (31), substituting (29), (30), and taking into account (34), we have the following differential equation: 
𝑈𝑈𝜇𝜇𝑥𝑥

′′ = 2𝑈𝑈𝜇𝜇𝑥𝑥𝐶𝐶𝜇𝜇п𝑥𝑥 = 2𝐴𝐴1.                                   (35) 
By integrating (35), we obtain: 

𝑈𝑈𝜇𝜇𝑥𝑥 = 𝑍𝑍𝜇𝜇п 𝐴𝐴1𝑥𝑥2 + 𝐴𝐴2𝑥𝑥 + 𝐴𝐴3.                               (36) 
The unit value of the magnetic conductivity of the working gap is determined from (34) with regard to (36) as: 

 
𝐶𝐶𝜇𝜇п𝑥𝑥 = 𝐴𝐴1

𝑍𝑍𝜇𝜇п 𝐴𝐴1𝑥𝑥2+𝐴𝐴2𝑥𝑥+𝐴𝐴3
                                                          (37) 

Expressions of the magnetic fluxes 𝑄𝑄𝜇𝜇2𝑥𝑥 and 𝑄𝑄𝜇𝜇3𝑥𝑥, determined from (31) with regard to (4), have the following form: 
𝑄𝑄𝜇𝜇2𝑥𝑥 = 𝐴𝐴1𝑥𝑥 + 1

2𝑍𝑍𝜇𝜇п 
𝐴𝐴2 + 1

2 𝑄𝑄𝜇𝜇м,                                                     (38) 

𝑄𝑄𝜇𝜇3𝑥𝑥 = −𝐴𝐴1𝑥𝑥 − 1
2𝑍𝑍𝜇𝜇п 

𝐴𝐴2 + 1
2 𝑄𝑄𝜇𝜇м.                                                   (39) 

 
We obtain partial solutions of equations (36)-(39) by determining the integration constants 𝐴𝐴1, 𝐴𝐴2, and 𝐴𝐴3for the 
following boundary conditions: 

𝑄𝑄𝜇𝜇2𝑥𝑥=0 = 𝑄𝑄𝜇𝜇м;   𝐶𝐶𝜇𝜇п𝑥𝑥=0 =  𝐶𝐶𝜇𝜇п0 = 𝐴𝐴1
𝐴𝐴3

;   𝑄𝑄𝜇𝜇2𝑥𝑥=𝑋𝑋м = 0.               (40) 
Substituting in (37)-(39) their marginal values according to (40), we obtain the following values of integration constants: 

𝐴𝐴1 = 𝑄𝑄𝜇𝜇м
𝑋𝑋м

;  𝐴𝐴2 = −𝑍𝑍𝜇𝜇п 𝑄𝑄𝜇𝜇м;  𝐴𝐴3 = 𝑄𝑄𝜇𝜇м
 𝐶𝐶𝜇𝜇п0𝑋𝑋м

  .                   (41) 

Substituting (41) into (36)-(39), we obtain a layered one: 
𝑈𝑈𝜇𝜇𝑥𝑥 = 𝑄𝑄𝜇𝜇м

 𝐶𝐶𝜇𝜇п0𝑋𝑋м
[𝑍𝑍𝜇𝜇п  𝐶𝐶𝜇𝜇п0𝑥𝑥2 − 𝑍𝑍𝜇𝜇п  𝐶𝐶𝜇𝜇п0𝑋𝑋м𝑥𝑥 + 1],                                 (42) 

 𝐶𝐶𝜇𝜇п𝑥𝑥 =  𝐶𝐶𝜇𝜇п0
𝑍𝑍𝜇𝜇п  𝐶𝐶𝜇𝜇п0𝑥𝑥2−𝑍𝑍𝜇𝜇п  𝐶𝐶𝜇𝜇п0𝑋𝑋м𝑥𝑥+1.                                                   (43) 

𝑄𝑄𝜇𝜇3𝑥𝑥 = 𝑄𝑄𝜇𝜇м
𝑋𝑋м

𝑥𝑥,                                                                     (44) 

𝑄𝑄𝜇𝜇2𝑥𝑥 = 𝑄𝑄𝜇𝜇м (1 − 𝑥𝑥
𝑋𝑋м

)                                                            (45)     
It should be noted that the value of the magnetic flux 𝑄𝑄𝜇𝜇м is based on the following equation, derived from the second 
Kirchhoff law for a closed magnetic circuit: 

𝐹𝐹в = 𝑍𝑍𝜇𝜇0𝑄𝑄𝜇𝜇м  + 𝑍𝑍𝜇𝜇п ∫ 𝑄𝑄𝜇𝜇2𝑥𝑥𝑑𝑑𝑥𝑥 +𝑋𝑋м
0 𝑈𝑈𝜇𝜇𝑥𝑥=𝑋𝑋м,                           (46) 

here 𝑍𝑍𝜇𝜇0 is the magnetic resistance of the magnetic circuit section between its points a and b. 
From (46) we obtain the following value of the magnetic flux 𝑄𝑄𝜇𝜇м: 

𝑄𝑄𝜇𝜇м = 𝐹𝐹в 𝐶𝐶𝜇𝜇п0𝑋𝑋м
1+𝑍𝑍𝜇𝜇0  𝐶𝐶𝜇𝜇п0𝑋𝑋м+1

2𝑍𝑍𝜇𝜇п  𝐶𝐶𝜇𝜇п0𝑋𝑋м2
.                                      (47) 

The analysis of obtained expressions (42)-(45) shows that in order for the values of the working magnetic fluxes 𝑄𝑄𝜇𝜇2𝑥𝑥 and 
𝑄𝑄𝜇𝜇3𝑥𝑥 to change linearly, a change in the net magnetic conductivity of the working gap between the middle and inner 
cores by (43) is required. 
Considering that 𝐶𝐶𝜇𝜇п𝑥𝑥 = 𝜇𝜇0

𝜋𝜋(𝑟𝑟2+𝑟𝑟3)
𝛿𝛿𝑥𝑥

, 𝐶𝐶𝜇𝜇п0 = 𝜇𝜇0
𝜋𝜋(𝑟𝑟2+𝑟𝑟3)

𝛿𝛿0
 and 𝑍𝑍𝜇𝜇2п = 1

𝜇𝜇𝜇𝜇0𝜋𝜋(𝑟𝑟2+𝑟𝑟3)ℎ2
, then expression (43) takes the 

following form:  
 𝐶𝐶𝜇𝜇п𝑥𝑥 = 𝜇𝜇0

𝜋𝜋(𝑟𝑟2+𝑟𝑟3)
𝛿𝛿0+ 1

𝜇𝜇ℎ2
(𝑥𝑥2−𝑋𝑋м𝑥𝑥) = 𝜇𝜇0

𝜋𝜋(𝑟𝑟2+𝑟𝑟3)
𝛿𝛿𝑥𝑥

.                                             (48) 

From (48) we can see that: 
𝛿𝛿𝑥𝑥 = 𝛿𝛿0 + 1

𝜇𝜇ℎ2
(𝑥𝑥2 − 𝑋𝑋м𝑥𝑥).                                                      (49) 

From (47) we see that at 𝑥𝑥 = 0 and 𝑥𝑥 = 𝑋𝑋м function value 𝛿𝛿𝑥𝑥 = 𝑓𝑓(𝑥𝑥) equals  𝛿𝛿𝑥𝑥𝑚𝑚𝑚𝑚𝑥𝑥 = 𝛿𝛿0, but at 𝑥𝑥 = 1
2 𝑋𝑋м - 𝛿𝛿𝑥𝑥𝑚𝑚𝑥𝑥𝑥𝑥 =

𝛿𝛿0 − 1
𝜇𝜇ℎ2

∙ 𝑋𝑋м2

2   
The expression (47) is valid for the left and right of the central half of the magnetic wire. Therefore, for both halves of 
the magnetic core expression (47) can be written in the following form: 

𝛿𝛿𝑥𝑥 = 𝛿𝛿0 + 1
𝜇𝜇ℎ2

(𝑥𝑥2 − 𝑋𝑋м|𝑥𝑥|).                                                (50)  
For example, when 𝑋𝑋м = 0,1 м; ℎ2 = 0,005 м; 𝛿𝛿0 = 0,01 м and μ=1000 (value of the relative magnetic permeability 
of electrical steel grade 1512 when changing the induction within (0÷0,8 Tesla), which due to the large air gap in the 
path of the working of the magnetic flux can be assumed constant, i.e. μ=const), expression (50) has the following form: 

𝛿𝛿𝑥𝑥 = 0,01 + 0,2(𝑥𝑥2 − 0,1|𝑥𝑥|).                                               (51) 
At 0 ≤ 𝑥𝑥 ≤ 0,5𝑋𝑋м and 0,5𝑋𝑋м ≤ 𝑥𝑥 ≤ 𝑋𝑋м values of the function 𝛿𝛿𝑥𝑥 change within the limits, respectively 

0,01 ≤ 𝛿𝛿𝑥𝑥 ≤ 0,0095 and 0,0095 ≤ 𝛿𝛿𝑥𝑥 ≤ 0,01. As can be seen from the last ratios, if 𝑥𝑥 changes within 0 ≤ 𝑥𝑥 ≤
0,5𝑋𝑋м maximum variation 𝛿𝛿𝑥𝑥 (∆𝛿𝛿𝑥𝑥𝑚𝑚𝑚𝑚𝑥𝑥 = 𝛿𝛿𝑥𝑥𝑚𝑚𝑚𝑚𝑥𝑥 − 𝛿𝛿𝑚𝑚𝑥𝑥𝑥𝑥) is 0,0005 м = 0,5 мм, i.e. 5% from 𝛿𝛿𝑥𝑥𝑚𝑚𝑚𝑚𝑥𝑥 = 𝛿𝛿0. 
The electromotive force of mutual induction between the concentrated stationary sections 7,8 of the excitation windings 
and the movable measuring winding 9 is determined, according to the law of electromagnetic induction [11], as follows: 
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�̇�𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = −(𝑗𝑗𝑗𝑗𝑤𝑤meas.�̇�𝑄𝜇𝜇3𝑒𝑒1=𝑒𝑒 − 𝑗𝑗𝑗𝑗𝑤𝑤meas.�̇�𝑄𝜇𝜇3𝑒𝑒2=−𝑒𝑒) = 
= −𝑗𝑗2𝑗𝑗𝑤𝑤meas.�̇�𝐹в

𝐶𝐶𝜇𝜇п0
1+𝑍𝑍𝜇𝜇0  𝐶𝐶𝜇𝜇п0𝑋𝑋м+1

2𝑍𝑍𝜇𝜇п  𝐶𝐶𝜇𝜇п0𝑋𝑋м2
𝑥𝑥,                          (52) 

 
here w meas. is the number of turns in the movable measuring winding. 
 
4. Conclusions 
Thus, the design of the developed DTS creates strictly the same magnetic resistance in the path of magnetic field lines 
along the whole length of the working gap due to the implementation of the linear value of magnetic capacitance of the 
working gap between the middle and inner cores of the magnetic core by (43), as a result of which the working magnetic 
fluxes are distributed along the length of the cores strictly according to linear law, and the static characteristic of the 
developed DTS is linear in the linear motion measurement range. In the developed detector, this is achieved by selecting 
the law of variation of the working gap between the middle and inner cores along the moving length of the movable 
measuring winding by making the middle concentric core in the form of a paraboloid of rotation. 
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