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Abstract. Tree bark plays a protective role by surrounding the wood of a tree like a cloak. Due to its 

chemical composition and the possibility of its use in various fields, such as pharmaceuticals, 

landscape architecture, etc., tree bark receives much attention having outstanding importance for 

industrial utilization and markets. Tree bark is considered a valuable forest product, along with the 

wood volume. Thus, the accurate prediction of the bark quantity that a tree can produce is of utmost 

importance for the sustainable management of the forests. For this reason, the knowledge of its 

quantities, further enables the accurate prediction of the plain wood volume that can be produced by 

the forest, as well. Because of the nonlinear nature of this biological variable, its accurate 

quantification is a very complicated problem. Artificial intelligent methods have shown the potential 

to reliably predict biological variables that are non-linear in nature. In this work, the support vector 

regression methodology, as a nonlinear nonparametric machine learning approach, is tested for the 

accurate prediction of the tree bark factor in every different height of the tree bole, through easily 

obtained measurements on trees. 

1 Introduction  

Pine trees (Pinus brutia Ten.) have important 

characteristics, as far as drought tolerant and fast growth 

are concerned. Furthermore, they are coniferous species 

which are native in the Mediterranean region [1]. They 

can also be found in planted areas, such as parks and 

urban forests in the same region. Pine trees belong to 

these species that can reach high bark thickness with 

ageing (Fig. 1), with mean value of about the 15% of its 

over-bark wood bole volume [2]. 

 

Fig. 1. Pine bark of about forty years of age tree. 

 Beyond to its known protective role in the survival 

of the tree, bark derived from different tree species can 

be utilized as a pollution bioindicator [3-5], as well. Due 

to bark chemical composition [6] it can be used as a raw 

material for the manufacture of pharmaceutical 

substances, as a soil conditioner along with groundcover 

product in garden architecture [7] and finally, as an 

alternative source of energy. These are the main reasons 

why it is essential for forest management decisions to 

rely on the accurate prediction of the bark quantities that 

a forest can produce, even in the case that tree bark can 

be considered just as remnant. According to previous 

studies [8] inaccurate predictions in bark volume can 

significantly and negatively influence the profit that can 

be derived from a forest area. 

Since the variation of bark thickness along the tree 

bole, is a reality, accurate bark factor (BFi), which 

represents a bark thickness ratio, values prediction 

through models, can significantly contribute to the 

accurate and reliable diameters bark percentage (bdi%) 

prediction for each diameter (di), leading to the accurate 

prediction of the tree bole volume along with the tree 

bark volume of the trees. To this direction, in order for 

the bark volume of the trees to be accurately predicted, 

many different modeling methodologies have been 

applied till today, mostly including linear and non-linear 

regression models [9-14]. Lately, in the scientific area of 

forest research, attention is paid to the machine learning 

methodologies, that due to their nonparametric 

algorithms, are free of assumptions beset the regression 

modeling methodology [15]. Furthermore, there is no 

need for a specific model form to be pre-specified, as it 

is essential in regression modeling; instead, in the area of 

the artificial intelligence, the learning methodology 

applied shows the ability to learn from noisy and, 

frequently, incomplete data, such as the ground-truth 

forest data. Till now, some attempts have been made, in 

order for the tree bark quantities to efficiently be 

modeled through the usage of the machine learning 

strength. That is, [7] compared the performance of 

artificial neural networks with non-linear regression 
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models, while [16] compared the performance of the 

support vector machine for regression with the same 

technique, in both works the comparisons made with the 

use of pine and black alder trees bark volume prediction, 

respectively. [17] used nonlinear autoregressive 

exogenous neural network technique (recurrent neural 

network) for estimating the double bark thickness of oak 

and Scots pine trees. All the above attempts concluded 

that the machine learning approach has the ability to 

adequately describe the patterns of the preliminary data 

in hand. Furthermore, from the comparison of the 

machine learning methodologies with more traditional 

approaches, such as the regression analysis, the first 

showed superior performances than the latter.    

Following the necessity of reliable models 

production that can positively influence the accurate 

prediction of the tree bark quantities in the forest, and 

taking into account that the bark factor (BF) is one of the 

most important variables that directly affect the bark 

volume configuration, this study aims to explore, test 

and finally provide an efficient modeling approach, from 

the new perspective of the machine learning modeling, 

hoping that the current approach has the potential to lead 

to the most accurate tree bark quantities prediction.    

2 Materials and methods 

2.1 Study area and data collection 

In order for the bark factor (BF) to be accurately 

predicted by an efficient model, a stem analysis dataset 

was created including several measurements, namely a 

total of 1474 data on fifty-seven standing pine trees from 

Seich–Sou urban forest of Thessaloniki, Greece, were 

taken. Urban forest of Thessaloniki lays in the area that 

is included by the geographic coordinates 40°37’33.0’’N 

and 23°00’45.0’’E. It is an almost purely planted pine 

forest, along with some other species that can be found 

in the forest, as well, such as trees of Cupressus 

sempervirens L., Cupressus arizonica Greene, Quercus 

coccifera L, etc. [18].  

In an effort for the measurements to be taken from 

trees of all different site qualities and classes in order for 

all the possible variation of the trees attributes to be 

covered, systematic sampling was used. A GPS 

instrument was used for the sampled trees to be located 

on the ground.  

Tree measurements included over bark diameter at 

stump height (do0.3) (0.3 meters height from ground), 

diameter at breast height (do1.3) (1.3 meters height from 

ground), over bark diameters (di) at one-meter height 

intervals above breast height until the tree tip, double 

bark thickness (bi) in all relative heights (hi) where the 

over bark diameters were measured, and total height (tht) 

of the sampled trees. The instruments used for obtaining 

the measurements on the tree boles were the caliper, the 

Spiegel relaskop, the Blume – Leiss altimeter, and the 

Pressler’s incremental borer [2, 19] (Fig. 2). 

 

Spiegel relaskop 

 

 
clipper 

 

 

Blume – Leiss altimeter 

 

 
Pressler’s incremental borer 

Fig. 2. Instruments used for obtaining the measurements on the 

tree boles. 

2.2 Comprehensive data base construction 

Different values of the bark factor (BFi) were produced 

in different heights of the trees boles: 

                                  BFi = doi / dui  (1) 

where doi is the over-bark diameter at i meters from 

ground and dui is the under-bark diameter at the same 

bole height (hi).  

The values of the under-bark diameters (dui) were 

calculated as:  

                                  dui = doi - bi  (2) 

where bi is the double bark thickness at the tree bole 

height (hi).  

In order to predict the bark factor profile over the tree 

bole, the relative height (RHi) of the tree bole that the 

measurements were taken, is also calculated:  

                                  RHi = hdi / tht  (3) 

where hdi is the tree bole height (hi) where the diameter 

measurement (di) was taken and tht is the total height of 

the tree bole. 

The resulting values of the ε-SVR estimation and 

prediction system are essential for the calculation of the 

bark percentage of any diameter along the tree stem, 

while in this way, it is possible to accurately calculate 

the pure (without bark) tree stem volume for any tree 

stem section and the relative tree bark volume by 

applying the following system of equations [2]: 

                        vui =voi/BFi  (4) 

                        vbi =voi 
. (1-(1/BFi))  (5) 

where, vui is the under-bark volume of the tree stem 

section i, voi is the over-bark volume of the tree stem 

section i, and vbi is the bark volume of the tree stem 

section i. 

Having the quantities of equations (4) and (5), the 

total tree stem pure volume (under-bark) and the total 
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bark volume can be assessed by summing all the above 

portions of the stem.  

Arithmetic mean values, maximum and minimum 

values and the standard deviation (Sd) of the basic 

variables used as the ground-truth information for the 

bark factor modeling configuration, are given in Table 1. 

Table 1. Descriptive statistics of the field measurements and 

the variables used for the bark factor modeling configuration.  

feature mean min max Sd 

do0.3, cm 16.56 11.58 22.85 2.76 

do1.3, cm 13.67 7.13 19.10 2.61 

bi, cm 0.81 0.08 3.31 0.036 

tht, m 8.36 6.00 11.00 0.061 

BF 1.10 1.03 1.40 0.002 

RH 0.48 0.03 0.99 0.013 

In order the predictive ability of the constructed 

model to be tested in new, never seen by the model in its 

construction phase, data, the available data set was 

divided randomly into two parts. That is, the fitting data 

set consists of the 90% of the total data in hand, and the 

test data set consists of the remaining 10%.   

2.3 Support vector regression model (SVR) 
construction 

Nowadays, artificial intelligence (AI) is examined in 

order for its effectiveness to be verified in environmental 

and more specifically, in forest modeling [20, 21]. As a 

subset of AI, the machine learning methodologies 

include the Support Vector Regression (SVR) technique 

[22]. The outstanding characteristic of this methodology 

is its generalization ability. Furthermore, its potential of 

learning from noisy or incomplete data by detecting 

inherent complex nonlinear relationships between output 

and input variables, is a challenging ability, that worths 

exploration in forest modeling research [16, 23-25], 

where such kind of data are encountered. Specifically, 

the ε-SVR algorithm used in the present modeling effort, 

which is a supervised learning algorithm, attempts to 

find a function f(x) from these data pairs between inputs 

and output, so as the regression error of all training 

samples to be minimized by lying within an optimum 

width of the ε-insensitive zone [−ε, ε]. In order for 

intricate patterns in the data to be captured by the 

algorithm, non-linear Radial Basis Function (RBF) 

kernels have been used. The RBF Kernel Support Vector 

regression was implemented in the scikit-learn libraries 

[26] and the Python programming language [27]. It is 

worth noting that a set of the optimum values of three 

meta-parameters guides to the successful learning of the 

algorithm. These meta-parameters are the ε which 

controls the width of the ε-insensitive zone, the gamma 

parameter (γ) which is inversely proportional to the 

variance (σ) and used for the RBF kernel width control, 

and the cost parameter (C) which is a regularization 

parameter, known as the penalty parameter, used in order 

to specify the trade-off between mis-prediction against 

simplicity of the model [16]. Each one of them 

separately and interactively at the same time, controls 

the adequate learning of the system under the kernel 

equation: 

                        K(x1, x2) = exp(-γx1 - x22), γ>0  (6) 

where x1, x2 are two points or Support Vectors (SV) with 

an Euclidean (L₂-norm) distance between them (x1 - 

x2), γ = (1 / 2σ2) and σ2 is the variance. 

The bark correction factor (BFi) was used as the 

output variable of the ε-SVR modeling system. The over 

bark diameter at breast height (do1.3), the relative stem 

heights (hi) where the over bark diameters were 

measured,  the total height (tht) of the sampled trees, the 

ratio between the relative height and the total height of 

the trees and the ratio between the over- and under-bark 

diameters at breast height, that are easily obtained on the 

tree bole, were used as the input information to the 

modeling system. 

2.4 Model evaluation criteria 

The indicators calculated for the training and the test 

data set were: 

the correlation coefficient (R), the root mean square 

error (RMSE) and the % root mean square error 

(RMSE%), and the average absolute error (AAE), of the 

bark factor (BFi) used as the output feature in the 

modeling process. In addition, the measured bark factor 

(BFi) values were compared with the predicted by the 

constructed model values. For this reason, the 45–degree 

line and the paired t-test were used. As a final evaluation 

of the statistical behaviour of the ε-SVR constructed 

model, its error distribution was examined, as well. 

3 Results and discussion 

The optimum combination of the meta-parameters 

values was selected using the tuning technique called 

grid-search methodology [26]. The exhaustive search 

was performed in the range of 10-4 to 0.30, by 0.001 

concerning the configuration of the (ε) parameter, in the 

range of 0.05 to 1.00, by 0.05 concerning the 

configuration of the (γ) parameter, while the tested 

values of the (C) ranged from 2 to 30, by 0.1, in order for 

the optimum combination that led the system to the 

minimum loss, to be selected.  

Following the grid-search methodology, the ε-SVR 

model produced the most accurate results, used the 

optimum combination of its meta-parameters with values 

C = 5.7, γ = 0.06, and ε = 0.001 (Fig. 3). 
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Fig. 3. SVR model meta-parameters optimum combination. 

The evaluation statistics of the ε-SVR model that will 

be used for the accurate estimations and predictions of 

the bark factor values along the tree bole, for the fitting 

and the testing data set, are given in Table 2. 

Table 2. Evaluation statistics of the ε-SVR model showed the 

best adaptation to the available data. 

metrics 

Data set 

Training 

(90% of all 

data) 

Test 

(10% of all 

data) 

R 0.9374 0.9885 

RMSE 0.0179 0.0216 

RMSE% 1.63 1.96 

AAE 0.00032 0.00046 

As it is shown (Table 2), the ε-SVR manifested a 

remarkable adaptation not only to the training data set 

but to the “never seen by the model” test data set, as 

well. The estimations and predictions RMSE% which 

were 1.63% and 1.96% of the BFi mean observed values, 

respectively, can be considered as sufficiently small 

error percentages BF values. 

  

Fig. 4. 45-degree line for the training and the test data sets. 

Furthermore, the proximity of each point to the 45-

degree line indicated that the ε-SVR constructed model, 

has the ability to adequately estimate and predict the 

bark factor values throughout the tree bole (Fig. 4). 

According to the t-tests applied under the 

significance of α=0.05, to examine if there are any 

differences between the observed and a) the estimations 

and b) the predictions, which were both derived by the 

constructed ε-SVR model, the p-values were equal to 

0.100 and 0.371, respectively. The p-values were greater 

than 0.05, meaning that there are no significant 

differences, for both categories. Finally, the residual 

distribution of the ε-SVR constructed model was also 

examined (Fig. 5). 

  

Fig. 5. Residuals distribution. 

It is obvious (Fig. 5) that both the estimations and 

predictions derived are reliable, with a pick of the 

residuals derived around zero, while there are a few 

larger residual values, meaning that the constructed 

system is a healthy one and shows the potential to 

accurately produce the bark factor values of pine trees. 

Using the result by the e-SVR model and following 

the reasoning of the equations (4) and (5), the predicted 

pure total tree stem volume can be summarized to Figure 

6, where the stem volume under-bark it is shown as it 

has been calculated availing the information derived by 

the constructed ε-SVR model. 

 

Fig. 6. Over bark and under bark volume as predicted using the 

results of the ε-SVR bark factor model. 

4 Discussion 

In forestry, the production of reliable models that can 

accurately predicted the values of any tree attribute, is of 

vital importance, especially when there are difficulties in 
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the collection of the ground-truth data that almost always 

faced in the primary data collection in the field. 

Furthermore, data measured on biological organisms 

usually include high variability and belong to several 

kinds of non-normal distributions. For all the above 

reasons, the research in the modeling area to be focused 

in new and smart technologies that show the potential to 

effectively adapt to biological organisms’ attributes 

without any prerequisites is a challenge. To this 

direction, machine learning is worth of exploration in the 

forestry research field.  

On the other hand, nowadays, there is an increasing 

need followed by an equally increasing interest for wood 

and bark quantities that can be used not only for 

industrial utilization, but for energy, as well. Therefore, 

it is of significant importance to produce models that can 

effectively predict the quantities of wood and bark that a 

forest can produce. This knowledge is essential for the 

sustainable management of this natural resource, that is 

the forest. Since bark can reach about 15% of the wood 

volume, it is of utmost importance for the tree bark to 

accurately be predicted. The modelling technique that 

can reliably predict the tree bark quantities would 

significantly improve the forest management decisions in 

favor both the forest and the economic benefit from the 

use of this product. In this way, decisions related to the 

amount of biomass that can be safely removed from the 

forest will be safer, resulting to the avoidance of the 

forest ecosystem degradation over time. 

The machine learning methodology used in this 

research effort was the ε-SVR technique, that uses the 

the ε-insensitive loss function that ignores errors that are 

outside of the margin [-ε, ε], which is known as the ε-

insensitive tube. By solving the prediction problem at 

hand through the non-linear kernel radial basis function 

under optimum values of its meta-parameters using 

mapping of the nonlinearly separable available data into 

a linear separable future space, showed remarkable 

estimation and prediction abilities related to tree bark 

factor.  

The pure volumes predicted with the use of the BFi, 

where very close to the observed under-bark volumes of 

the pine trees, with mean absolute error equal to 0.0018 

m3 with values ranged from 0.000016 m3 to 0.0042 m3 

and standard error of the mean equal to 0.00013 m3 

(Fig.7). 

 

Fig. 7. Observed and predicted under-bark tree stem volume. 

 5 Concluding remarks 

According to the described behaviour of the constructed 

ε-SVR model, the ability of the system to overcome 

outliers, noise, non-Gaussian distributions that 

frequently characterize the forest preliminary data 

measured in the field, it is clearly revealed.  

Furthermore, the ε-SVR modeling technique showed 

remarkable adaptation to the non-linear ground-truth 

data, as well, producing effective and reliable bark factor 

prediction model. It was shown that the knowledge of 

bark factor values can lead to accurate estimations of 

bark quantities, further enables the accurate prediction of 

the plain wood volume that can be produced by the trees, 

as well.   

Based on the results obtained, the use of the support 

vector regression technique, where the non-linear radial 

basis function kernels were embedded, is strongly 

recommended. 
Finally, the results of this study can provide evidence 

along with a consistent basis for further research in the 

scientific area of forest modeling. 
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