Pinus brutia extractives analysis for sustainability

Dimitris Birbilis¹, Kostantinos V. Kakavas² and M. Chavenetidou³

¹University of Thessaly, Department of Forestry - Wood Science and Design, Karditsa, Greece

² University of Thessaly, Department of Environmental sciences, Laboratory of environmental chemistry and human health, 41500, Larisa

³Aristotle University of Thessaloniki, Department of Forestry and Natural Environment, Thessaloniki, Greece

Abstract. The aim of this study was to determine all the extractives from different samples were collected from heartwood, sapwood, bark and needles and branches of Pinus brutia. A Soxlet device with two solvents (water and ethanol) were used to collect the extracts. Analytical chemical analyses were conducted with Gas C1hromatography-Mass Spectrometry (Agilent 5975C). The greater percentage of the extracts in water and ethanol showed that the greater percentage of them is found in the branches and needles of the trees. Especially the results showed significant amounts of the chemical compounds, such as Borneol, Tetradecane, 6,6-Biquinoline, Butyl citrate, Isopropyl palmitate and Isopropyl myristate, which can be used for sustainability, environmental integration at the aspect of more effective use of natural resources and have many uses in novel – functional food, green chemistry and pharmaceutical industries. Finally, the greater percentage of the extracts in water and ethanol showed that the greater percentage of the trees.

1 INTRODUCTION

The reduction of raw materials leads to the necessity of sustainable development. The primary goal is the more effective use of natural resources and the reduction of forest waste after logging, in the form of wood residues. Extractives are compounds contained in large amount at the material mentioned above. Countries around the world, such as Poland, Canada, are focused on exploiting wood waste in order to produce energy or other materials from the extractives of forest residues [1, 2] and production of wooden barrels [3]. All forest species contain a large amount of extractives in their wood but also at their branches, bark, needles, cones and roots as well. Extractives are chemical compounds inside cell walls, more rarely in cell cavities, with various synthesis, such as aromatic phenolic compounds, aliphatic compounds, terpenes, terpenoids and others. Since there is no chemical attachment to the wood, extractives can be removed from it with the use of various solvents, for example hot water, methanol, ethanol, dichloromethane and others, without causing transformation of it [4-9]. Of the genus Pinus several species are native in Greece, such as Pinus brutia, Pinus nigra, Pinus pinea, Pinus leucodermis, Pinus peuce and others [10, 11].

The aim of this study was the quantitative and qualitative estimation of the extracts from the species *Pinus brutia* for further use, at the frame of the most effective exploitation of wood, wood residues and other wood products.

Previous researches [12] determined the extractive content of *Pinus brutia* wood around $7.76 \pm 2.43\%$ (w/w). Kivrak et al (2013) using an ultrasonic extraction method with 50% ethanol solution, revealed 15 compounds in Pinus brutia bark: gallic acid, gentisic acid, protocatechuic acid, 4-hydroxy benzoic acid, catechin hydrate, vanillic acid, caffeic acid, vanillin, p-coumaric acid, ferulic acid, myricetin, resveratrol, luteolin, naringenin, kaempferol [13]. Cretu et al (2013) also consider that Pinus brutia bark extracts are useful in dietary supplements industry because of high free radical scavenging and 15lipoxygenase inhibitory effects [14]. Ulukanli et al. (2014) found some remarkable antimicrobial, insecticidal, phytotoxic and antioxidant activities of Mediterranean Pinus brutia resin essential oils, giving a perspective for use in the formulation of ecofriendly biocompatible pharmaceuticals and [15].The antibacterial activity of Pinus brutia bark extracts by restriction of pathogenic bacteria in the intestines and simultaneous protection of commensal or beneficial ones, probably due to the phenolic components, was also confirmed by Demirtaş (2020) [16].

2 MATERIALS AND METHODS

2.1. Experimental procedure

The research material originated from the University Forest of Aristotle University of Thessaloniki in Taxiarchis, Chalkidiki (North Greece) (Figure 1.a). From each tree, wood discs were taken from breast height. Each disc was cut and came up a longitudinal strip of wood from pith to bark. The disks were divided into three different protions: bark, sapwood and heartwood (Figure 1.b). All the specimens were cut with the use of a sharp blade into smaller pieces and passed through the Willey mill in order to produce particles smaller than 0,1mm.

Figure 1.(a). Map of the sample collection area.

Figure 1.(b). Pinus brutia discs and samples of bark, needles and branches, from which the research material originated.

2.2. Chemicals and Reagents

All the reagents used were extra pure. Al_2O_3 , MgO_3Si , Na_2SO_4 and 1-bromo-2-nitrobenzene were purchased from Fluka.

2.3. Apparatus and separation conditions

A Soxhlet-type device of big size made from glass was used for the extractions. A wood sample from the Willey mill of 2g was placed in the Soxhlet device as well as a glass filter (Figure 2 a, b). The dry weight of the samples and the glass filter was calculated by weighing after drying in an oven at 103 ± 2 °C, before each extraction. The extractions with water lasted six hours, while with ethanol lasted four hours. For each extraction and each solvent a different sample was used. Four complete cycles of solvents were repeated according to the ASTM Standards [17, 18]. At the end of the extraction the samples were left at room temperature for many hours (more than 24) and then placed in an oven at 103°C for an additional 24 hours. Furthermore, the samples were weighed to determine the dry mass of the wood, after removing the extracts (1).

 $Percentage of extractives (\%) = \frac{Dry \ weight \ before \ extraction - dry \ weight \ after \ extraction}{Dry \ weight \ before \ extraction} (1)$

Figure 2. (a). Rotary evaporator and glass Soxhlet type device.

Figure 2. (b). Use of Al2O3 and florisil for bark extract filtering.

Qualitative extractives analysis was conducted with an Agilent 5975C GC-MS instrument. The solvents together with the extracts were condensed to about 2 ml final volume, with the use of rotary evaporator instrument (Büchi Rotavapor R-215, Büchi Heating bath B-491). The rotation speed of the vial ranged between 80 and 120 rpm and the temperature from 15-20 °C (for ethanol and dichloromethane extractions, according to their boiling point). The condensation process was completed using pure nitrogen gas vapor until the appropriate final volume was reached. A glass chromatography column (1 cm internal diameter) was used to clean the samples that could damage the chromatography column. For this reason Florisil (MgO₃Si) 2.5g, Al₂O₃ 3.5g and Na₂SO₄ 1.5g were used to absorb moisture (Figure 2.b). The mass spectrometer was equipped with quadrupole non-polar capillary column DB-5ms, 30m length and 0.25mm internal diameter, film thickness 0.25µm, filler 5% phenyl polysiloxane and 95% methyl polysiloxane. The conditions of Gas chromatography Agilent 7890A for the compounds identification and quantification were: flow rate 0.99333 mL/min and pressure 11.656 psi and use of Helium as a carrier gas. The Library used for the

identification of the compounds was the one applied in the Gas chromatography and the identification of the compounds based on the largest percentage of appearance and previous knowledge of *Pinus* extracts, according to literature. Two temperature programs were applied, for better resolution. The first temperature program was: Initial temperature at 70°C, for 4 minutes, raising rate 50°C/min and final temperature program was: Initial temperature at 60°C, for 4 minutes, raising rate 50°C/min and final temperature up to 280°C for 10 minutes. The last temperature up to 240°C for 5 minutes. Compounds identification was based on mass spectrometry and each peak of diagrams conducted.

3 RESULTS

The greater percentage of water and ethanol soluble extractives was found in the branches and needles of the trees (Figure 3). More especially chemical analysis showed significant amounts of chemical compounds, such as Borneol, Tetradecane, 6,6-Biquinoline, Butyl citrate Isopropyl palmitate and Isopropyl myristate.

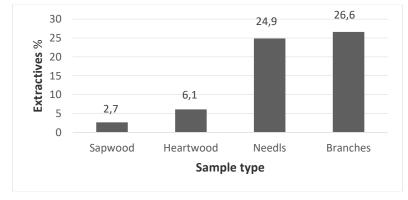


Figure 3. Extracts amounts from different parts of Pinus Brutia with water.

The chemical compound 1-bromo-2-nitrobenzene was used as Internal Standard (IS) for the estimation of the quantity sapwood GC-MS analysis revealed the results below [19, 20]. Table 1 shows that in sapwood

there are great amounts of 2-propenoic acid, ethyl oleate, ethyl ester linoleic acid, 2-dodecene (Z), diethoxydimethoxy-silane, borneol and 2,5-bis-(1,1-dimethylethyl) Phenol.

Table 1. Chemical compounds found at Pinus brutia sapwood specimens (ethanol extracted
specimens)

	Integration	Type of chemical	Integration
Type of chemical compounds	area/internal	compounds	area/internal
	standard area	1	standard area
2,2-diethoxy-Ethanol	0.015	3-methyl-2	0.062
-		phenylethyl ester	
		Butanoic acid	
1-butoxy-2-Propanol	0.002	Pentadecane	0.070
Benzaldehyde	0.023	2,5-bis (1,1-	0.172
		dimethylethyl) Phenol	
diethoxydimethoxy-Silane	0.210	7-Hexadecene,(Z)-	0.015
1-(2-methoxypropoxy)-2-	0.048	Neomethylamine	0.060
Propanol			
2-Propenoic acid	0.357	Benzophenone	0.065
Benzyl alcohol	0.092	Longofolenaldehyde	0.055
1-Octanol	0.046	Tetradecanoic acid	0.018
1-ethyl-2,3-dimethyl-	0.013	Terbuthilazine	0.249
Benzene			
Undecane	0.030	Octadecane	0.223
Nonanol	0.041	Isoromadendrene	0.074
		epoxide	
Borneol	0.117	Isopropyl myristate	0.014
2-Dodecene(Z)-	1.120	(-)-trans-Pinene	0.025
Benzothiazole	0.103	Eicosane	0.118
2-propenyl Cyclohexane	0.003	2-alpha - Pyrrolidine	0.047
Caprolactam	0.012	N,N-Dimethylindo-	0.064
		aniline	
3,6,6,-trimethyl-2-Norinanol	0.066	ethyl ester Linoleic	0.230
		acid	
Tridecane	0.175	Ethyl oleate	0.349
1-bromo-2-nitro Benzene	1.000	Myclobutanil	0.184
1-Tetracosanol	0.069	1-(hexadecyloxy-)2-	0.096
		Propanol	
6-Tetradecene	0.139	2-Chloropropionic	0.197
		acid, octadecyl ester	
Isophytol	0.069	6-methoxy-2-methyl-	0.085
		3-Quinoline-4-ol	
1-methyl-Piperidine	0.107	Bis (7-methyloctyl)	0.069
		ester Phthalic acid	
Tetratriacontane	0.042		

The chemical compound 1-bromo-2-nitrobenzene was used as Internal Standard (IS) for the estimation of the quantity heartwood GC-MS analysis revealed the results below. According to the Table 2 below, in heartwood the chemical compounds in large quantities are borneol, piperidine, benzothiazole, isopropyl myristate, isopropyl palmitate and 6,6 biquinoline. Compared to sapwood, in heartwood are found larger amounts of benzaldehyde, borneol, caprolactam, isopropyl myristate and benzophenone.

Type of chemical compounds	Integration	Type of chemical	Integration
	area/internal	compounds	area/internal
	standard area		standard area
d-Glycoheptose	0.172	Homovanillyl alcohol	0.102
2,2-diethoxy-Ethanol	0.020	Phytol	0.042
Sec-Butyl nitrtite	0.006	2,5,-bis (1,1-	0.226
		dimethylethyl) Phenol	
Morpholine	0.020	Diethyl phthalate	1.110
Benzaldehyde	0.436	Benzophenone	0.095
Tetraethyl silicate	0.175	Isooctylmercaptoacetate	0.276
3-Carene	0.018	2,6- Diisopropyl	0.019
		naphthalene	
Benzyl alcohol	0.107	1-Adamantene ethanol	0.081
3-methyl-Phenol	0.036	Octadecene	0.084
Nonanol	0.059	Isopropyl myristate	0.825
Borneol	2.910	Triexadecyl borate	0.044
Benzothiazole	0.453	Isoamyl laurate	0.552
Caprolactam	0.077	Longifoleraldehyde	0.059
Cinnamaaldehyde	0.085	Monomenthyl salicylate	0.200
Tridecane	0.332	Dibutyl phthalate	0.121
Terpin hydrate	0.278	Piperidine	0.405
Bacchotricuneatin C	0.098	Isopropyl palmitate	0.969
1-bromo-2-nitro Benzene	1.000	Tributyl acetylcitrate	0.660
Cyclotetradecane	0.199	6,6-Biquinoline	3.483
3,5-Dimethoxybenzaldehyde	0.275	-	
d-Glycoheptose	0.172	Homovanillyl alcohol	0.102
2,2-diethoxy-Ethanol	0.020	Phytol	0.042
Sec-Butyl nitrtite	0.006	2,5,-bis (1,1-	0.226
2		dimethylethyl) Phenol	
Morpholine	0.020	Diethyl phthalate	1.110

Table 2. Chemical	compounds for	ound at Pinus	brutia I	heartwood	specimens ((ethanol	extracted	
		spec	imens)					

As it is shown in Table 3, needles contain large quantities (+)-4-careen, butyl citrate, cyclotetradecane,

tridecane, diphenyl-Pyrazole, megastigmatrienone and aminosalicylic acid.

Table 3. Chemical compounds found at Pinus brutia needles specimens (ethanol extracted specimens)

Type of chemical compounds	Integration	Type of chemical	Integration
Type of elicinical compounds	area/internal	compounds	area/internal
	standard area		standard area
3,4,4-trimethyl-3-pentanol	0.165	alpha-hydroxy-Benzene acetic acid	0.784
2 mathed 2.5 mantanatrial	0.016	ethoxymethoxy-	0.137
3-methyl-3,5-pentanetriol		Cyclohexane,	
	0.024	3,5-bis(1,1,-dimethyl-	0.188
1-butoxy-2-propanol		ethyl) Homovanillyl	
		alcohol	
1,6-dideoxygalactitol	0.002	Phenol	0.140
Benzaldehyde	0.088	Isocyclocitrol	0.150
Tetraethyl silicate	0.161	Dodecanoic acid	0.148
1H-pyrrole-2- carboxaldehyde	0.089	Megastigmatrienone	0.310
N-butyl-Acetamide	0.265	Diethyl phthalate	0.655
•	0.105	Thiophene, tetrahydro-2-	0.064
Benzyl alcohol	0.100	methyl	0.001
1-(1H-pyrrol-2-yl)-Ethanone	0.012	Aminosalicylic acid	0.334
2-pyrrolidinone	0.025	cis-11-tetradecen-1-ol	0.228
2-methoxy-Phenol	0.149	Tetradecanoic acid	0.305
2			

Phenylethyl alcohol	0.219	tetrahydro-2-methyl- Thiophene	1.928
Borneol	0.068	Butyl citrate	1.511
3-ethyl-Cyclohexene	0.759	Tricosane	0.036
1,2,3-trimethyl-Cyclohexane	0.085	7-oxodehydroabietic acid, methyl ester	0.269
4- (2-propenyl)-Phenol	0.140	5-amino-1,3- Hexadecanamide	0.180
Trans-shisool	0.037	diphenyl-Pyrazole	0.302
Tridecane	0.199	Semperiverene	0.497
2-methoxy-3-vinylphenol	0.011	1,6-dien-3-ol Humulane-	0.119
Bacchotricuneatin C	0.161	Squalene	0.087
1-bromo-2-nitro Benzene	1.000	Bromoacetic acid, octadecyl ester	0.180
(+)-4-careen	0.340	3-methyl-9-chloro- acridine	0.228
Cyclotetradecane	0.386	8-methyl-octan- hydrocoumarin	0.100

Bark specimens extracted with ethanol appeared to have great amounts of bis-(trimethylsilyl)-

Mercaptoacetic acid, tetradecane, triethyl borate and hexadecane.

Type of chemical compounds	Integration area/internal standard area	Type of chemical compounds	Integration area/internal standard area	
Triethyl borate	4.092	Naphthalene (isomers)	0.070	
1R-alpha-Pinene	0.008	Eudesma-4(14),11- diecene	0.013	
alpha-Pinene	0.005	Pentadecane	0.042	
Diisoamylene	0.070	Butylated Hydroxytoluene	0.051	
Decane	0.044	Tetratriacontane	0.009	
3-Carene	0.022	Hexadecane	1.252	
2-methylpropyl-	0.026	45-diamino-2(1H)-	0.018	
Hydroxylamine		Pyrimidine-ethienone		
5-methyl-Undecane	0.002	1-(1-oxobutyl)- Pyrrolidine	0.021	
Iridomyrmecin	0.007	Heptadecane	0.034	
Camphor	0.042	Methyl tetradecanate	0.044	
Azulene	0.024	Anthracene	0.017	
Dodecane	0.568	Tetradecanoic acid	0.018	
4-methoxy Benzaldehyde	0.012	Isopropyl palmitate	0.026	
Estragole	0.015	2,5-dimethyl-Thiazole	0.442	
1-methyl- n-Butyric acid, 2- ethylhexyl-ester Naphthalene	0.053	Eicosane	0.384	
	0.067	Methyl abietate	0.027	
1-bromo-2-nitro Benzene	1.000	Squalene	0.124	
Biphenyl	0.006	bis (trimethylsilyl)- Mercaptoacetic acid	0.501	
Tetradecane	1.222			

Table 4. Chemical compounds found at Pinus brutia bark specimens (ethanol extracted specimens)

In all cases, many extractives of scientific and commercial interest were found As shown in figure 4, Borneol and 6,6 Biquinoline are two extracts found in the heartwood and in the highest concentration, alphahydroxy-Benzene acetic acid, Butyl citrate and tetrahydro-2-methyl-Thiophene are three extracts found in the needles and in the highest concentration.

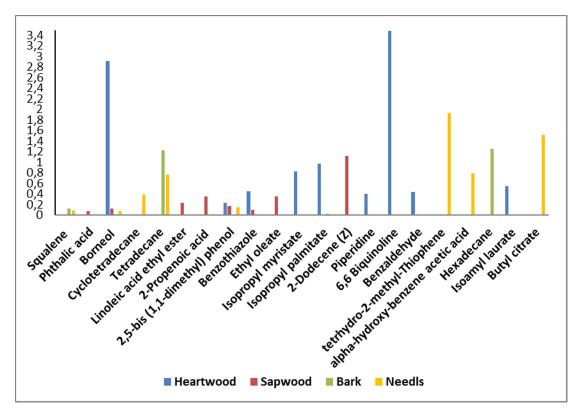


Figure 4. Quantity and type of Pinus brutia extracts.

4 Conclusions

From all the above data, it is obvious that the largest number of extractives was found in needles and branches. The results compared with other Pinus species are in agreement with those of other researchers [13, 14]. Furthermore, many compounds detected in this research were found from previous researchers as well [14, 15]. In this work an attempt was made to extract the ingredients of the species Pinus brutia using green techniques and solvents that help in the production of green products and help in sustainable development. In summary, all the extracts which were found can have many applications in human life, in the aspect of the optimization of natural utilization, taking resources into consideration the green growth, circular economy and sustainable development, since new uses of natural resources are suggested.

Authors want to acknowledge assistance from colleagues and special work by technical staff.

References

- M. Bożym, A. Gendek, G.Siemiątkowski, M. Aniszewska, J. Malaák, *Materials* 14(4), 973 (2021)
- 2. M. Royer, R. Houde, Y. Viano and T. Stevanovic J. Food Nutr. Res., 138 (2012)
- Kakavas, K. V., Carpathian Journal of Food Science and Technology 12(4), 91-97 (2020)

- 4. W. E. Hillis, *Wood Extractives*. (N.Y. and London: Academic Press, 1962)
- G. Tsoumis, Science and Technology of Wood: Structure, Properties, Utilization. (NewYork: Van Nostrand Reinhold, 1991)
- A. Grigoriou, Chemistry and Chemical Technology of Wood (in Greek). (Thessaloniki: Publications Office of Aristotle University of Thessaloniki, 1992)
- 7. I. Philippou, *Chemistry and Chemical Technology of Wood (in Greek)*. (Thessaloniki: Yahoudis Publications, 2014)
- 8. M. Chavenetidou, K.V. Kakavas, D. Birbilis, *IOP Conf. Ser.: Mater. Sci.En*, (IOP Publishing, 2020)
- 9. M. Chavenetidou, K.V. Kakavas, and Birbilis D IOP Conf. Series: Earth and Environmental Science (2022)
- 10. N. Athanasiadis, Forest Botany II. Trees and Shrubs of the Greek Forests (in Greek). (Thessaloniki: Yahoudis Publications, 1986)
- D. Birbilis, K.V. Kakavas, M. Chavenetidou, M. European Journal of Applied Sciences 10(2), 172-178 (2022)
- B. Üner, İ. Karaman, H. Tanrıverdi, D. Özdemir, Wood Sci Technol 45, 121–134 (2011)
- I. Kivrak, Ş. Kıvrak, M. Harmandar, Y. Cetintas *Records of Natural Products* 7(4), 313-319 (2013)
- 14. E. Cretu, M. Karonen, J.P. Salminen, C. Mircea, A. Trifan, C. Charalambous, A.I.

Constantinou, A. Miron, *J Med Food*, **16(11)**, 984-091 (2013)

- Z. Ulukanli, S. Karabörklü, F. Bozok, B. Ates,
 S. Erdogan, M.G. Cenet Mand Karaaslan, *Chin J Nat Med* 12(12), 901-910 (2014)
- 16. A. Demirtaş, *MAE Vet Fak Derg* **5(2)**, 34-39 (2020)
- 17. American Society for Testing and Measuring 2007a, ASTM Standard D1107-96 standard test method for ethanol-toluene solubility of wood (West Conshohocken)
- 18. American Society for Testing and Measuring 2007c, *ASTM Standard D1110-84 standard test method for water solubility of wood* (West Conshohocken)
- 19. M.S. Tziouvalekas, [Dissertation], (Ioannina: University of Ioannina Greece, 2011)
- M. Chavenetidou, M. Tziouvalekas, C. Pankou, *PRO LIGNO* 16(3) (2020)