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Abstract. Fly ash-based geopolymer concrete is studied in this research work for its compressive strength, 

life cycle and environmental impact assessment contribution to the construction environment. This is in line 

with the United Nations' sustainable development goals SDG9 and SDG11. However, the focus of this 

research paper is on the sustainability of geopolymer concrete and its overall environmental impact. The 

metaheuristic machine learning approaches have been deployed to predict the compressive strength (CS) of 

the GPC based on environmental impact considerations of the concrete constituent materials, which 

included fly ash, sodium silicate, sodium hydroxide, fine and coarse aggregates. The metaheuristic 

techniques include the k-Nearest Neighbour (kNN), support vector regression (SVR), and random forest 

regression (RFR), where all are optimized with the particle swarm (PSO). These metaheuristic techniques 

have been modified for this research work with new codes to enhance innovation in terms of run time and 

efficiency. The results of the life cycle assessment (LCA) evaluation of the GPC mixes based on the 

Ecoinvent 3 available in SimaPro and Eco-indicator 99 and CML 2001 modified in the framework of 

ReCiPe 2016 recent development show reduced potential of environmental acidification due to increased fly 

ash (FA) in the GPC mixes compared to previous results. The decisive CS and LCA predictive models, 

RFR-PSO and SVR-PSO respectively performed optimally above 90% and better than previous models 

from the literature. Overall, they present an innovative metaheuristic smart technology for the prediction of 

the GPC infrastructure behavior and performance integrity.  

1 Introduction 

In recent decades, concrete is known as the most 

applicable construction material. Ordinary Portland 

cement (OPC) is traditionally employed in the role of the 

precursor in the production of concrete [1]. With the 

boom in the construction industry, the manufacturing of 

OPC has faced a remarkable rise as well as the 

production of greenhouse gases. As a result, there has 

been a continuous investigation for alternative building 

and construction materials that have a lower carbon 

footprint [2]. When cement, the binding material in 

concrete, is manufactured, approximately the same 

amount of CO2 is released into the environment. As a 

consequence of this, several researchers have 

experimented with various strategies that aim to reduce 

the amount of cement that is used in concrete, either 

partially or entirely [3]. Using geopolymer (GP) concrete 

is one of the most common ways to compensate for this 

adverse effect of OPC. It is appealing to note that OPC is 

totally substituted in GP concrete making it a more 

environmentally friendly building material than ordinary 

concrete [3]. Alkali activation of amorphous alumino-

silicate material in the presence of a warm environment 

results in the formation of geopolymer, which serves as 

the binding material in geopolymer concrete. It has been 

said that the production of geopolymer concrete with a 

compressive strength of up to or even higher than 60 

MPa might be accomplished with relative ease [4]. 

Because of its superior performance, such as resistance 

to acid and sulphate, geopolymer concrete is seen as a 

viable building material to replace cement concrete [4]. 

Previous studies have reported that the geopolymer can 

reduce CO2 emission by 80-90 % compared to the OPC 

[4]. On the other hand, the effectiveness of geopolymer 

concrete as a construction material has been the subject 
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of exhaustive research. According to the findings of Yip 

and colleagues [5], aluminosilicate gel (N-A-S-H) and 

C-S-H can both be found in geopolymer pastes that are 

based on MK/SG. This is pretty comparable to a 

geopolymer that is based on high levels of calcium FA 

and is activated in particular by sodium hydroxide 

(NaOH), as reported by Somna et al. [6]. The C-S-H and 

N-A-S-H components of concrete paste each contribute 

to the paste's overall strength. To put it another way, the 

alkalinity level of the activators that are utilized has a 

significant effect on the strength of geopolymer pastes. 

Additionally, it was observed that temperature has a very 

crucial effect on the activation of the aluminosilicates. 

According to the findings of several studies, the 

activation process in mixtures of FA and SG is 

predominated by SG activation at temperatures as low as 

roughly 27 degrees Celsius, but at temperatures as high 

as approximately 60 degrees Celsius, both FA and SG 

are activated. Despite this, the SG is making a positive 

contribution to the strength of pastes thanks to the 

compactness of its microstructure [6]. The production of 

C-S-H and C-A-S-H is responsible for the hardening of 

geopolymer that is based on FA/SG. The further creation 

of C-S-H, N-A-S-H, and C-A-S-H occurs after the 

hardening has taken place. On the other hand, the 

development of hydration gels is reliant on calcium ions 

as well as pH levels. The amount of alkali in the paste 

caused the compression strength of the geopolymer to 

rise. On the other hand, strength diminishes with 

increasing levels of silica. This is an impact of the 

SiO2/R2O ratio, which helps to contribute to the 

formation of the ring structure. Zhang et al. [7] found 

that activation alone by NaOH can create crystalline 

zeolite or nanosized crystals, depending on the Si/Na 

ratio. This was shown to be the case. The incorporation 

of sodium silicate has the potential to considerably 

lessen the production of crystallites. 

Portland Cement is the most popular building 

material used throughout the construction industry. 

cement consumption is also increasing as a result of 

rising urbanization in emerging nations [8-10]. Cement 

production has a lot of environmental consequences. The 

extraction of limestone, an important cement raw 

material, pollutes the environment, including the 

surrounding ecology and flora and fauna [11,12]. 

Portland Cement (PC) production releases an almost 

equivalent quantity of CO2 into the atmosphere, resulting 

in air pollution [13]. Even while various activities exist 

to absorb CO2, it still forms a major part of ecological 

contamination [14]. CO2 emissions from cement 

manufacturing contribute to around 7% of total 

greenhouse gas emissions and contribute to about 4% of 

global warming [14]. 

As a result, studies have focused more on alternative 

construction materials in recent decades, such as 

increasing the use of low-carbon supplementary 

cementitious materials (SCMs) as a partial substitute for 

PC, developing alternative low-carbon binders, and 

increasing the use of recycled materials to reduce natural 

resource utilization [8]. Meanwhile, industrial waste 

disposals, such as fly ash (FA) and Ground Granulated 

Blast-Furnace Slag (GGBS), raise a number of 

difficulties. They cannot be dumped in the water, and 

dumping them on land pollutes the environment. This 

sparked interest in developing Geopolymer Concrete 

(GPC), an alternative building material generated from 

industrial waste [9]. GPC is a relatively innovative green 

building material that is gaining popularity. It is made by 

using alkali activators like water glass and NaOH to 

activate the cementitious properties of solid 

aluminosilicate materials like FA, ground granulated 

blast-furnace slag (GGBS), or metakaolin in an alkaline 

environment at a low curing temperature [13]. It has 

gotten a lot of attention because of its low carbon 

dioxide emissions, low embodied energy, chemical 

resistance, high thermal resistance, and great potential 

for recycling industrial waste to keep the environment 

clean and healthy [14]. As a renewable resource, 

geopolymer has an 80 percent reduced carbon footprint 

than Portland cement [14]. GPC compressive strength is 

influenced by the alkali activator to solid materials 

proportion, the silicate to hydroxide proportion, the 

alkali activator class, and the solid materials content 

[14]. 

Engineers face a difficult challenge in predicting 

Geopolymer Concrete compressive strength since it 

varies owing to several circumstances. As a result, a 

numerical model capable of accurately estimating the 

strength performance of this concrete type is required, 

such as soft computing approaches [15]. Several studies 

looked at how the molar content of the NaOH solution, 

curing temperature, curing method, and duration of FA-

based eco-friendly geopolymer concrete influenced 

compression strength. Several investigators have found 

that increasing the molarity of NaOH solution increases 

compression strength [14], whereas others have found 

that increasing the molarity has a detrimental influence 

on strength [14]. According to Van Jaarsveld et al. [14], 

particle size, calcium content, alkali metal content, 

amorphicity, and the form and provenance of the FA, all 

impacted the features of geopolymers. The calcium-

fortified FA was discovered to have a crucial effect on 

the strength growth and ultimate compression strength, 

as more calcium concentration leads to faster strength 

performance and increased compression strength. They 

proposed two machine learning (ML) strategies for 

estimating the compression strength of FA-based GPC in 

this study. The data for training and validating methods 

was obtained through experimental work with 335 

mixture ratios. In their research [16], Van Dao et al. 

suggested novel hybrid artificial intelligence (AI) meets 

to estimate the 28day compression strength of 

geopolymer concrete comprising 100 percent waste slag 

aggregates (WSA), namely a genetic algorithm (GA)-

based adaptive network-based fuzzy inference system 

(GAANFIS) and a particle swarm optimization (PSO)-

based adaptive network-based fuzzy inference system 

(PSOANFIS). A number of 21 distinct mixtures with 

210 samples were prepared and tested to build and 

validate these models. To predict the compression 

strength of GPC, the mass proportion of alkaline 

activation solution to FA (Which varies from 0.4 to 0.5, 

and the mass ratio of Na2SiO3 to lye solution, which 

varies from 2 to 3, were utilized. The prediction 
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algorithms employed the compression strength of the 

generated geopolymer concrete as an output parameter. 

Both the PSO-based ANFIS and the GA-based ANFIS 

performed well in predicting geopolymer concrete's 28-

day compression strength, but the PSO-based ANFIS 

outperformed the GA-based adaptive network-based 

fuzzy inference system. Van Dao et al. [16] used two AI 

approaches, adaptive neuro-fuzzy inference (ANFIS) and 

artificial neural network (ANN), to evaluate the 

compression strength, with fine and coarse aggregate 

waste steel slag as materials. The produced mixes 

contained FA, NaOH in solid form, liquid glass, fine and 

coarse steel slag aggregates, and water, with four 

variables (FA, NaOH, liquid glass, and water) acting as 

independent factors for modeling. At a typical age of 28 

days, 210 specimens were made with an intended 

compression strength of 25, 35, and 45 MPa. The two 

artificial intelligence prediction programs were given 

these values as targets. While both ANNs and ANFIS 

models have a reasonable probability of projecting 

geopolymer concrete compressive strength, the findings 

reveal that ANFIS outperforms ANNs. Nguyen et al. 

[17] looked at nine input parameters that include the 

following: FA, sodium silicate solution, NaOH solution, 

fine and coarse aggregate, H2O, NaOH solution 

concentration, curing time, and curing temperature, with 

compression strength being the output. Three measures 

were used to assess the efficacy of the ML reaches: 

correlation coefficient (R), mean absolute error (MAE), 

and root mean square error (RMSE). There was a 

significant relationship between ML models and 

experimental outcomes. The presented models may be 

used to create a consistent mixture as well as to calculate 

the ratios of GPC based on FA. Nagajothi and Elavenil's 

work [18] findings that were obtained from the 

experimental and predictive research were used to 

determine the mechanical properties of Aluminosilicate 

materials such as GGBS and FA-based GPC samples. 

The amounts of GGBS and FA, and also the quantity of 

manufactured sand (m-sand) used to replace existing 

river sand in geopolymer concrete production, were the 

main focus of the experimental inquiry. The mechanical 

properties of the GPC that were investigated were 

compression strength, splitting tensile strength, and 

modulus of rupture. As the quantity of GGBS utilized in 

the tests rose, the mechanical properties of GPC 

improved. Furthermore, the test findings revealed that 

increasing the proportion of manufactured sand used 

boosted the mechanical qualities of the GPC until an 

optimal dose was reached, beyond which mechanical 

capabilities began to deteriorate. The mechanical 

characteristics of GPC predicted by an ANN were 

performed to validate agreement with test findings. 

As a result of the above, the objective of this paper 

was to propose realistic models to predict the 

compressive strength of GPC, which are novel in terms 

of the materials employed and the methodology used to 

create them. This was carried out considering the 

environmental impact assessment evaluation of the GPC 

components. 

2 Methodology 

2.1 Geopolymer Concrete (GPC) Data Collection 

The geopolymer concrete (GPC) database was collected 

from multiple data representing universal mixes of 

different sets of concrete reported by Nurul Aida Mohd 

Mortar et al. [19]. It was statistically analyzed and the 

result is presented in Tables 1 and 2. 

 

Table 1. Statistical analysis of the GPC database. 

 FA SH SS FAg CAg LCA CT CP CS 

count 53 53 53 53 53 53 53 53 53 

mean 452.18 73.92 147.29 669.21 1075.02 12.46 37.26 46.05 46.17 

std 82.34 29.58 42.87 120.74 164.42 2.32 16.13 108.64 21.12 

min 300 18 40.8 490 810 8.89 23 0.5 3.2 

25% 400 57 132.6 576 936 11.1 25 28 35 

50% 450 64 150 650 1080 12.2 28 28 47.3 

75% 497 85 171.4 723 1200 13.5 60 28 62.8 

max 640 160 228.6 990 1470 17.8 70 790 85 

 

Table 2. The correlation of the database parameters. 

 FA SH SS FAg CAg LCA CT CP CS 

FA 1.000 0.244 0.745 -0.401 -0.483 0.966 -0.100 -0.014 0.406 

SH 0.244 1.000 -0.223 -0.250 -0.201 0.214 -0.052 -0.258 -0.113 

SS 0.745 -0.223 1.000 -0.379 -0.309 0.862 -0.152 -0.031 0.355 

FAg -0.401 -0.250 -0.379 1.000 -0.436 -0.459 -0.196 0.227 0.075 

CAg -0.483 -0.201 -0.309 -0.436 1.000 -0.453 0.226 -0.239 -0.353 
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LCA 0.966 0.214 0.862 -0.459 -0.453 1.000 -0.145 -0.074 0.375 

CT -0.100 -0.052 -0.152 -0.196 0.226 -0.145 1.000 0.152 -0.315 

CP -0.014 -0.258 -0.031 0.227 -0.239 -0.074 0.152 1.000 0.099 

CS 0.406 -0.113 0.355 0.075 -0.353 0.375 -0.315 0.099 1.000 

 

 

2.2 Life Cycle and Environment Impact 
Assessment 

The term "geopolymer" is used to describe an inorganic 

polymer produced by alumino-silicate-rich raw 

materials. which are greener materials than cement since 

they emit fewer greenhouse gases and may use waste by-

products from other industries as raw materials, such as 

coal fly ash [20]. 

Countries all over the globe are aggressively acting 

to minimize energy consumption and emissions to 

successfully mitigate the negative effect of the building 

sector on global warming. Silicate cement is one of the 

most widely utilized modern building materials since it 

is a key component of concrete materials. The industrial 

manufacturing of cement uses a large amount of 

materials and energy, accounting for 10% of world 

energy consumption [21]. The calcination of raw 

materials generates a lot of CO2 and other hazardous 

gases, which causes a lot of pollution in the 

environment. Geopolymer concrete (GPC) has been 

identified as an excellent new ecologically friendly 

building material, decreasing the usage of energy-

intensive, emission-intensive cement and, as a result, 

lowering the environmental effect to some extent. 

Nowadays, life cycle assessment (LCA) is regarded as 

one of the most methodical and scientifically based 

environmental assessment methodologies for evaluating 

building materials across their whole life cycle [22], as 

detailed in IS014040. Most LCA studies, on the other 

hand, concentrate on the environmental effect of 

ordinary Portland cement (OPC) or mixed cement 

concrete. The large environmental burden of OPC 

concrete was shown to be mostly related to the cement's 

high energy utilization and gas emissions [23]. 

The LCA of GPC is only mentioned in a few papers. 

Turner [24] calculated that CO2 emissions from the 

mining used to create GPC concrete were about 9% 

lower than those from OPC concrete. When compared to 

OPC concrete, the metakaolin-based geopolymer might 

reduce CO2 emissions by 27–45 percent. The 

compressive strength of alkali-activated binary concrete 

was equivalent to or greater than that of OPC concrete, 

and it had a significant environmental benefit, since its 

carbon footprint was 44.7 percent lower. The production 

of the alkali activators differs somewhat, as does the 

need for increased temperature curing of GPC to obtain 

appropriate strength. A comprehensive environmental 

evaluation of GPC manufacturing in Australia was 

carried out by McLellan [25]. When compared to OPC, 

it can cut greenhouse gas emissions by about 44–64 

percent. Chen [26] reached the same conclusion. The 

"cradle to gate" model, which is often employed in LCA,  

does not account for environmental effects beyond the 

gate and can only be used to compare GPC and OPC 

production. The LCA of ternary blended AAM was 

explored by Faridmehr [27]. The “cradle to gate” 

system's border is expanded to encompass AAM's sulfate 

and mechanical resistance, according to the performance 

standards. In the AAM combination comprising high-

volume FA and GBF, the modified LCA with regard to 

CS demonstrated a decreased intensity of normalized 

CO2 emissions. The maximum intensity of normalized 

CO2 emissions is seen in AAM combinations including 

POFA, due to the comparatively low CS, and a large 

amount of power is needed for oven drying of POFA. 

3 Results and Discussion 

3.1 Life Cycle and Environment Impact 
Assessment of Geopolymer Concrete Mix Data  

In this section, the LCA approach is used to detect the 

environmental influence of producing 50 different GPC 

mixtures at various stages of their life cycle, including 

raw material extraction, ingredient production and 

transportation to the production site, and concrete 

manufacturing. According to Habert et al. [28], the 

structural function has a major influence on the 

environmental impact during the use stage. As a result, 

the primary goal of this investigation is to define the 

concrete type. As a result, the waste materials 

consumption and disposal phases were ignored since 

various kinds of concretes were expected to have similar 

effects at these stages. This form of partial analysis is 

helpful in the larger-scale creation of entire life cycles 

for particular types of concrete. Furthermore, the effect 

of the remaining life cycle, such as maintenance and 

destruction, is assumed to be identical for the 50 

combinations after the concrete is poured. Throughout 

the investigation, the database (Ecoinvent 3) available in 

SimaPro was used. More than 10,000 public processes 

are included in this database [28, 29]. Materials and 

procedures were chosen from the SimaPro data set based 

on facts on the status of raw material availability as well 

as expert views. 16-32-ton trucks with EURO3 fuel 

standards were used to examine the environmental 

implications of the transport stage in the LCA method of 

concrete manufacturing. The CO2 emission factor was 

calculated to be 0.0033-kilogram CO2 eq per m3 of GPC 

throughout the production and transportation phases. 

Additionally, 0.009 kg/m3 [24] was assigned to the 

element that includes structural temporary support and 

access throughout the manufacturing phase. The energy 

used in the production of LWC was measured in terms of 

mixing time and mixer power consumption. The LCA 

technique was based on ReCiPe 2016. Although its 

     , 08009 (2023)
ICED2023

https://doi.org/10.1051/e3sconf/202343608009436E3S Web of Conferences

4



 

development is based on Eco-indicator 99 and CML 

2001, ReCiPe is a relatively recent LCA approach. It 

features 22 impact categories with midpoint 

normalization and characterization factors, as well as 

three endpoint category indicators with normalization 

factors, all of which measure damage to specific 

protective zones [30]. The ReCiPe is made up of two 

groups of impact categories, each with its own set of 

characterization elements. At the midpoint level, there 

are 22 impact categories, and most of these midpoint 

impact categories are multiplied by damage factors and 

grouped into 3 endpoint categories at the endpoint level. 

Human health, ecosystems, and resources are the 

endpoint characterization elements employed in ReCiPe. 

It's worth noting that human health is measured in terms 

of the number of life years lost as well as the number of 

years spent incapacitated. Disability Adjusted Life is the 

result of combining these factors. These are integrated as 

Disability Adjusted Life Years (DALYs), whereas 

ecosystem loss is defined as the loss of species through 

time and space. Similarly, "resources" is defined as the 

excess costs of future resource output over an indefinite 

time horizon (assuming constant yearly production) with 

a discount rate of 3% [28-30]. The unit is 2000 US 

dollars. The values of the impact category were 

separated into reference values during normalization so 

that all groups could be compared at the same time. 

SimaPro's normalization numbers are adjusted per 

citizen. The EU25 +3 population was used as the default 

figure in SimaPro, and the global population was used as 

the default value based on the ReCiPe 2016 technique. 

The primary purpose of normalization is to determine the 

importance of each product and its respective outcome 

ranges. 

3.2 Machine Learning Analysis of GPC Mix and 
LCA Impact 

3.2.1 Machine Learning Analysis of GPC Mix and 
LCA Impact 

For the LAC, the following variables were used as 

regressors; fly ash (FA), sodium silicate (SS), sodium 

hydroxide (SH), fine aggregate (FAg), and coarse 

aggregate (CAg). The kNN, SVR and RFR optimized 

using meta-heuristic algorithms of the Particle Swarm 

Optimization (PSO) and Differential Evolution (DE) to 

enhance their overall performance were deployed. Figure 

1 shows the outcome of the kNN-PSO model of the LCA 

with performance indices; R2 0.766, MAE 0.556, MSE 

0.791, and RMSE 0.889. It can be observed that the 

predicted and observed values matched with a good fit. 

Figure 2 shows the SVR-PSO model of the LCA 

outcome. This shows that the model performed with the 

indices; R2 0.999, MAE 0.054, MSE 0.004, and RMSE 

0.060. It can further be observed that the linear kernel 

SVR-PSO model possessed good fit and correlation in 

terms of observed and predicted values. Figure 3 shows 

the model performance of the RFR-PSO on the 

prediction of the LCA of the GPC. The results show that 

the R2 is 0.980, MAE 0.245, MSE 0.074, and RMSE 

0.273. It further shows a relatively good fit between the 

observed and predicted values. 

3.2.2 Prediction of the Compressive Strength (CS) 
of the GPC 

For CS prediction, the following variables were used as 

regressors; fly ash (FA), sodium silicate (SS), sodium 

hydroxide (SH), fine aggregate (FAg), coarse aggregate 

(CAg), curing temperature (CT), and curing period (CP). 

Also, the kNN, SVR and RFR optimized using meta-

heuristic algorithms of the Particle Swarm Optimization 

(PSO) and Differential Evolution (DE) to enhance their 

overall performance were deployed. Figure 4 shows the 

outcome of the kNN-PSO model of the CS with 

performance indices; R2 0.630, MAE 11.060, MSE 

146.595, and RMSE 12.108. It can be observed that the 

predicted and observed values matched with a good fit. 

Figure 5 shows the SVR-PSO model of the CS outcome. 

This shows that the model performed with the indices; 

R2 0.445, MAE 11.944, MSE 219.551, and RMSE 

14.817. It can further be observed that the linear kernel 

SVR-PSO model possessed not too good fit and 

correlation in terms of observed and predicted values. 

Figure 6 shows the model performance of the RFR-PSO 

on the prediction of the CS of the GPC. The results show 

that the R2 is 0.915, MAE 0.731, MSE 1.829, and RMSE 

1.352. 

  

Fig. 1. LCA kNN-PSO model. 
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Fig. 2. LCA SVR-PSO model. 

 

  

Fig. 3. LCA RFR-PSO model. 

 

  

Fig. 4. CS kNN-PSO model. 

 

  
Fig. 5. CS SVR-PSO model. 
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Fig. 6. LCA RFR-PSO model.

4 Conclusions 

The metaheuristic machine learning techniques have 

been deployed to predict the compressive strength (CS) 

and life cycle assessment (LCA) points under 

environmental impact considerations of the concrete 

constituents. The following remarks can be concluded 

from the forgone exercise: 

• Less CO2 equivalent (CO2 eq) per m3 was released 

from the production and transportation of the GPC 

compared to the conventional concrete.  

• The prediction of the GPC compressive strength 

(CS) showed that the random forest regression 

optimized with the particle swarm optimization 

(RFR-PSO) algorithm outclassed the kNN-PSO and 

the SVR-PSO with a very wide margin. 

• The prediction of the life cycle assessment (LCA) 

points showed that the support vector regression 

optimized with particle swarm optimization (SVR-

PSO) algorithm outclassed both the kNN-PSO and 

the RFR-PSO. 

• Generally, the deciding models possessed the least 

errors and best fit between the optimized and 

measured values.  
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