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Abstract. In this paper, selected materials that influence the viscosity of the self-consolidating concrete 

(SCC)  are introduced like the Limestone Powder (LSP), the High Range Water Reducing Admixture 

(HRWRA), which reduce the interparticle force between concrete constituents like the aggregates, and other 

superplasticizers. Moreover, in serious attempts to design the SCC for different infrastructure requirements, 

there have been repeated laboratory visits, which need to be reduced. In this research paper, the artificial 

intelligence (AI) methods: Artificial Neural Network (ANN), Evolutionary Polynomial Regression (EPR), 

and Genetic programming (GP) have been deployed to predict the slump flow (SF), V-funnel flow time 

(VFFT), L-box ratio (LBR) or passing ratio, and Orimet flow time (OFT) of LSP-admixed SCC. The 

independent variables of the predictive model were cement, LSP, water, water-binder ratio, HRWRA, sand, 

and coarse aggregates of 4/8 mm and 8/16 mm sizes. The flow tests were conducted after 5 minutes of waiting 

time after mixing. The model results showed ANN with superior intelligent learning ability over previous 

models in terms of overall performance.  

1 Introduction  

The flow of concrete became an important aspect of 

sustainable concrete technology due to serious needs 

occasioned by compact and heavy reinforcement practices 

in the construction industry [1-3]. This was developed to 

overcome the segregation, dynamic stability, flow time, 

and shear deformation problems associated with concrete 

handling and placement through heavily reinforced 

structural members [4-9]. Hence, the innovative 

development of the Self-Consolidating Concrete (SCC) 

was born based on EFNARC requirements [10-13]. The 

SCC has the necessary flowability advantages, which 

include flow time, flow ratio, dynamic stability and 

segregation resistance, shear resistance, settlement 

resistance, etc. [11-16]. There has also been the need to 

experiment with the SCC flowability properties through 

various experimental setups and propose possible models 

with which to monitor the performance of the fresh 

concrete [17, 18]. The most dominant of these 

experimental setups include slump flow, V-funnel flow, 

L-box flow, and the Orimet flow models [17, 18]. While 

the slump flow exercise studies the vertical collapse in 

flow outward flow of the fresh concrete, the V-funnel, the 

L-box, and the Orimet flow exercises study the standard 

flow time, passing ratio, and Orimet flow time 

respectively [19-22]. However, to achieve the required 

flowability of the SCC, certain structural materials are 

introduced into the traditional concrete that changes the 

behavior of the fresh concrete and its ability to flow [17, 

18-21]. These materials could be either cement, fine 

aggregates, coarse aggregates, and limestone powder or in 

combination with plasticizers and high-rate water-

reducing admixtures [18]. Further developments have 

shown solid waste-based admixtures perform the same 

purpose of increasing the SCC flowability [22-26]. 

Limestone Powder (LSP) has been used in previous 

research works as an admixture in the production of the 

SCC [18]. This research showed substantial 

improvements in the flowability behavior of the SCC [17, 

18]. In addition, the composition of the mixes in the 

production of concrete also affects the SCC behavior in 

terms of flow [18, 27, 28]. Some other materials like steel 

fiber have also been introduced in the production of SCC 

with remarkable results. Various numerical and soft 

computing techniques have been deployed in the 

modeling of the SCC properties according to the literature 

[2, 16, 18, 22, 27, 29-31]. However, in this research paper, 

three intelligent models have been proposed each for the 

slump flow (SL), V-funnel flow time (V5), L-box flow 

ratio (L5), and the Orimet flow time (O5). This was 

performed for SCC measured after 5 minutes of mixing 

and the intelligent techniques include the Artificial Neural 
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Network (ANN), the Evolutionary Polynomial 

Regression (EPR), and the Genetic Programming (GP).   

2 Methodology  

2.1 SCC Data Preparation  

The multiple databases of 20 SCC mixes were collected 

from literature [18] consisting of the following mix 

components and properties measured after 5 minutes of 

mixing: cement content (C) kg/m3, Limestone Powder 

content (LSP) kg/m3, water content (W) [kg/m3], 

HRWRA content (H) [kg/m3], sand content (S) [kg/m3], 

coarse aggregate (4 to 8mm) content (CA1) [kg/m3], 

coarse aggregate (8 to 16mm) content (CA2) [kg/m3], 

slump flow after 5 minutes (S5) [mm], V-funnel flow time 

after 5 minutes (V5) [seconds], L-box ratio after 5 minutes 

(L5), Orimet flow time after 5 minutes (O5) [seconds]. 

The measured records were divided into a training set (15 

records) and a validation set (5 records). Their statistical 

characteristics are summarized in Tables 1 and 2. Finally, 

Figure 1 shows the distribution histograms for both inputs 

and outputs. 

2.2 Research Plan  

Three different Artificial Intelligence (AI) techniques 

were utilized [32-37] to predict the flowability parameters 

of the tested concrete mixes. These AI techniques were 

the Artificial Neural Network (ANN), the Evolutionary 

Polynomial Regression (EPR), and the Genetic 

programming (GP) based on known training algorithms 

[32-37]. All three developed models were used to predict 

the Slump flow (S5) [mm], V-funnel flow (V5) [seconds], 

L-box ratio (L5), and Orimet flow time (O5) [seconds], 

all after 5 minutes of mixing using Cement content (C) 

[kg/m3], Limestone powder content (LSP) [kg/m3], Water 

content (W) [kg/m3], HRWRA content (H) [kg/m3], Sand 

content (S) [kg/m3], Coarse aggregate (4 to 8mm) content 

(CA1) [kg/m3], and Coarse aggregate (8 to 16mm) content 

(CA2) [kg/m3]. Each of the three developed models was 

based on a different method (mimicking biological 

neurons for the ANN, optimized mathematical regression 

technique for the EPR, and evolutionary approach for the 

GP). However, for each developed model, the prediction 

accuracy was calculated by the Sum of Squared Errors 

(SSE). The accuracies of the developed models were 

evaluated by comparing the SSE between the predicted 

and the calculated shear strength parameters values. 

 

Table 1. Statistical analysis characteristics of the collected database. 

 Min. Max. Range Mean Variance S.D. Skewness Kurtosis 

C 430.0 509.0 79.0 469.7 399.8 20.0 -0.03 -0.19 

LSP 122.0 144.0 22.0 133.0 30.7 5.5 0.00 -0.17 

W 181.0 215.0 34.0 198.0 72.5 8.5 0.00 -0.15 

H 3.10 6.40 3.30 4.80 0.71 0.84 -0.06 -0.24 

S 478.0 1100.0 622.0 789.2 24670 157.1 0.00 -0.19 

CA1 139.0 328.0 189.0 234.0 2260 47.5 -0.01 -0.17 

CA2 323.0 762.0 439.0 542.8 12242 110.6 -0.01 -0.18 

S5 51.5 94.5 43.0 75.6 134.3 11.6 -0.61 0.15 

V5 3.0 47.4 44.4 11.4 105.8 10.3 2.53 7.63 

L5 0.26 1.00 0.74 0.84 0.06 0.23 -1.58 1.26 

O5 1.6 47.1 45.5 8.9 123.8 11.1 2.49 6.98 

 

Table 2. Pearson correlation matrix. 

  C LSP W H S CA1 CA2 S5 V5 L5 O5 

C 1.00           

LSP 1.00 1.00          

W -1.00 -1.00 1.00         

H -0.09 -0.08 0.00 1.00        

S 0.00 0.00 0.00 0.00 1.00       

CA1 0.00 0.00 0.00 0.00 -1.00 1.00      

CA2 0.00 0.00 0.00 0.00 -1.00 1.00 1.00     

S5 -0.83 -0.83 0.80 0.48 -0.12 0.12 0.12 1.00    

V5 0.45 0.45 -0.46 0.06 -0.55 0.55 0.55 -0.30 1.00   

L5 -0.68 -0.69 0.66 0.36 0.09 -0.10 -0.09 0.85 -0.33 1.00  

O5 0.34 0.35 -0.36 0.12 -0.63 0.63 0.63 -0.19 0.97 -0.28 1.00 
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Fig. 1. Distribution histograms for inputs (in blue color) and outputs (in green color). 

 

3 Results and Discussion 

3.1 ANN Prediction of Flowability Parameters 

A back-propagation ANN with one hidden layer and 

nonlinear activation function (Hyper Tan) was used to 

predict (S5), (V5), (L5) and (O5) values. The used 

networks layout and their connection weights are 

illustrated in Figure 2 and Table 3. The average error % 

of the total dataset for these equations are (1.0, 5.3, 1.1 

and 4.5%) and the (R2) values are (0.996, 0.996, 0.998 and 

0.999) respectively. This model prediction is based on the 

replacement of cement with LSP thereby reducing 

footprints of carbon from cement utilization in concrete 

production.
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Fig. 2. Architecture layout of the developed ANN model. 

Table 3. Weights matrix for the developed ANN model. 

  Hidden Layer  Output Layer 
  H(1:1) H(1:2) H(1:3) H(1:4) H(1:5) S5 V5 L5 O5 

In
p

u
t 

L
ay

er
 

(Bias) 3.50 -0.70 0.58 0.70 0.39     

C 0.05 1.16 -1.25 -5.09 0.84     

LSP 0.44 -1.07 -1.13 3.30 -2.33     

W 0.17 -0.14 -2.52 -1.27 1.67     

H -1.78 0.71 -0.85 0.14 0.04     

S 0.99 0.24 -2.40 0.30 -0.70     

CA1 -1.67 -0.65 -1.33 0.31 0.25     

CA2 -1.76 -0.38 -0.30 0.11 -0.04     

H
id

d
en

 L
ay

er
  

(Bias)      -0.30 -2.95 -2.41 -2.93 

H(1:1)      0.07 -0.33 1.06 -0.77 

H(1:2)      -2.80 1.50 0.20 1.75 

H(1:3)      -3.16 3.11 0.98 3.39 

H(1:4)      0.92 3.79 5.08 3.62 

H(1:5)      -0.05 -1.89 -0.87 -1.90 

3.2 EPR Prediction of Flowability Parameters 

The developed EPR model was limited to the pentagonal 

level, for 7 inputs, there are 792 possible terms 

(462+210+84+28+7+1=792) as follows: 

∑ ∑ ∑ ∑ ∑ 𝑋𝑖
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. 𝑋𝑗 + ∑ 𝑋𝑖

𝑖=7

𝑖=1

+ 𝐶 

GA technique was applied on these 792 terms to select the 

most effective five terms to predict the values of (S5), 

(V5), (L5) and (O5). The outputs are illustrated in Eq. (1) 

to (4) and their finesses are shown in Fig. 3. The average 

error% and (R2) values were (2.6%-0.970), (35.7%-
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0.819), (11.2%-0.805) and (42.7%-0.869) for the total 

datasets respectively.  

 

3.3 GP Prediction of Flowability Parameters 

The developed GP model has six levels of complexity. 

The population size, survivor size, and the number of 

generations were 100 000, 25 000, and 200 respectively. 

Eq. 5 to 8 present the output formulas for (S5), (V5), (L5) 

and (O5) respectively, while Fig. 3 show their fitness 

respectively. The average error % of the total set for (S5), 

(V5), (L5) and (O5) are (3.3, 26.0, 7.0 and 24.5%) 

respectively, while the (R2) values are (0.949, 0.901, 

0.929 and 0.959) respectively.  

S5 =  6.66H + 0.88W − 4𝑋 − (
CA2

X2
) − 85,

𝑤ℎ𝑒𝑟𝑒 𝑋 = (
S

W − 107
) 

(5) 

V5 =
𝐻. X2

H2 − H. X2 + 1
+ X4Y2 + Y − 𝑋,

𝑤ℎ𝑒𝑟𝑒 𝑋 = (
CA1

W
)

2

,

𝑌 = (
S + H

CA2
) 

(6) 

L5 = 1.05 +
H. X

(C − S)
−

0.95 X

(H. X)3
 ,     

𝑤ℎ𝑒𝑟𝑒 𝑋 = (
H + W − 0.95LSP

LSP
) 

(7) 

O5 =
H − (1 − 𝑋)2

X3 − 𝑋 − H
−

1

X2 − 1
+ (X3 − 𝑋)[H − (1 − 𝑋)2]
+ 1 − X,

where 𝑋 = (
CA1

W
)

2

 

(8) 

3.4 Performance of the Predicted Flowability 
Parameters 

Figure 3 shows the relations between calculated and 

predicted values due to ANN, EPR, and GP for the slump 

flow (SF) designated as SL, V-funnel flow time (VFFT) 

designated as V5, L-box ratio (LBR) or passing ratio 

designated as L5 and Orimet flow time (OFT) designated 

as O5 of LSP-admixed SCC. Figure 4 shows the Taylor 

charts to compare the accuracies of developed models for 

each flowability parameter and Table 4 summarizes the 

overall performance of the AI models. It can be shown 

that the ANN showed the best fit and performance with 

the coefficient of determination for all the modeled SCC 

parameters above 90%. Also, the GP showed 

performances above 90% but is rated below the ANN in 

overall performance and fit between measured and 

predicted values. The EPR performed above 80% but 

showed the lowest strength in terms of the overall 

performance compared to the ANN and the GP. In 

comparing the present model results with previous 

literature [18], which had used the Support Vector 

Regression (SVR), with the following characteristics; 

R2 = 0.974 for slump flow prediction, R2 = 0.990 for V-

funnel time prediction, R2 = 0.976 for Orimet time 

prediction, and R2 = 0.988 for L-box ratio prediction, the 

ANN of this research work with R2 ˃ 0.99 outperformed 

it with some margins. Generally, it should be noted that 

the predictions are based on the role of LSP on the 

concrete behavior as a replacement of cement for a 

sustainable construction environment.  

4 Conclusions 

This paper presents three different models using three 

(AI) techniques (ANN, EPR and GP) to predict Slump 

flow (S5), V-funnel flow (V5), L-box ratio (L5), and 

Orimet flow time (O5) all after 5 minutes of mixing using 

Cement content (C), Limestone powder content (LSP), 

Water content (W), HRWRA content (H), Sand content 

(S), Coarse aggregate (4 to 8mm) content (CA1), and 

Coarse aggregate (8 to 16mm) content (CA2). The results 

of comparing the accuracies of the developed models 

could be concluded in the following points: 

• The prediction accuracy levels of the “ANN” model 

(95.5 to 99%) are higher than the accuracy levels of 

“EPR” (57.3 to 97.4%) and “GP” (74.0 to 96.6%) for 

all flow-ability parameters.  

• The “EPR” model presents simpler equations than 

“GP”, but the “GP” model showed better accuracy. 

• Eq. 1, 2, 5 and 6 indicated that S5 and V5 didn’t use 

LSP.   

S5 = 220 −
C2H

141 W
−

3.742 × 1010

C2 H S
−

22225 S

W2 H

+
1.013 S

H2
 

(1) 

V5 = 38 −
C2 CA2

3885773
−

1.146 × 1010 H

C S2

+
1.564 × 106 H

C CA2

+
 CA1 H CA2

5 S
 

(2) 

L5 = 628 −
C2 W

102160
 −

1.743 × 108

C2

+ 
1.123 × 1010

C2 LSP
+  

LSP2 W2

3380811
 

(3) 

O5 =  43.8 −  
C2 CA2

2759130
− 

1.134 × 1010 H

C S2

+
629750 H

C  CA1
+ 

H CA22

11 S
 

(4) 
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• Neglecting Eq. 4 due to low accuracy (57.3%), Eq. 8 

showed that O5 depends mainly on (H, W and CA1)  

• Eq. 3, 7 indicated that the L-box ratio doesn’t depend 

on coarse aggregates content (CA1, CA2).  

• Although, (ANN) showed better accuracy than (GP), 

but (GP) presents closed-form equations that could be 

manually used for preliminary estimations.  

• The GA technique effectively reduced the 792 terms 

of the conventional PLR pentagonal formula to only 

five terms, without any significant effect on its 

accuracy. 

• Overall, the replacement of cement with limestone 

powder reduced the negative environmental impact 

of concrete production due to cement use. 

As in other regression techniques, the herein generated 

formulas are valid only within the considered range of 

parameter values, and beyond this range, the prediction 

accuracy should be verified. 

 

Fig. 3. Relation between predicted and calculated flowability for different developed models. 
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Fig. 4. Taylor charts to compare the accuracies of developed models for each flow-ability parameter. 

Table 4. Accuracies of developed models. 

Technique 
S5 V5 L5 O5 

Error % R2 Error % R2 Error % R2 Error % R2 

ANN 1.0 0.996 5.3 0.996 1.1 0.998 4.5 0.999 

EPR 2.6 0.970 35.7 0.819 11.2 0.805 42.7 0.869 

GP 3.3 0.949 26.0 0.901 7.0 0.929 24.5 0.959 
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