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Abstract. A surfeit of Dissolved Inorganic Nitrogen (DIN), which is defined as the total amount of nitrite, 

nitrate, and ammonium levels in water, may cause negative effects to the marine environment. For example, 

elevated levels of DIN may promote surplus production of algae and possible depletion of oxygen in the 

water column. The DIN in the marine water column is monitored as part of the Water Framework Directive 

(WFD), the Nitrates Directive and the EU Marine Strategy Framework Directive (MSFD). Data-driven 

models have been proved to be an excellent management tool for environmental issues related to coastal 

water quality protection and management. Based on data-drive models, and specifically the Artificial Neural 

Networks (ANNs), the DIN levels from coastal stations in Cyprus were predicted. To do so, three different 

ANNs models were created, each of them calculating nitrite, nitrate, and ammonium levels respectively 

with high accuracy (r>0.95). The results derived from these models can be used to identify hot-spot areas 

with increased DIN levels and to evaluate management scenarios and measures to be implemented in order 

to maintain the good Environmental Status and quality of the coastal waters.    

1 introduction  

Coastal eutrophication caused by anthropogenic nutrient 

inputs is one of the most serious environmental issues 

and is responsible for the degradation of marine 

ecosystems worldwide [1]. Increased levels of human-

derived inputs of nutrients (mainly nitrogen (N) and 

phosphorus (P) compounds) are associated with the 

eutrophication phenomenon [2].  Usually, the coastal 

waters are extensively polluted by the nutrients in areas 

affected by the urbanization and agriculture activities 

[3]. In that case, the elevated levels of nutrients 

originated from anthropogenic activities trigger the 

eutrophication process into the coastal water ecosystem 

[4], causing unpleasant consequences. These 

eutrophication-originated side effects are mainly hypoxia 

(dissolved oxygen (DO) depletion in the water column); 

and harmful algal blooms [5] which are associated 

among others to aesthetic degradation of the water body 

(scum formation), harmful cyanotoxins production, 

biodiversity decline, massive fish kills and seagrass loss 

[5- 6]. 

The marine eutrophication is mainly 

affected/controlled by the N parameter. As stated by the 

Hudon et al. [7] the excess increase of N concentration 

into the coastal water because of cultural eutrophication, 

has as a result the marine phytoplankton production to 

suffer since it is mainly N-limited in temperate areas. 

Interestingly, according to Howarth and Marino [3] the 

N is the primary nutrient controlling coastal 

eutrophication instead of the P (which is considered the 

primary nutrient regarding freshwater eutrophication), 

something that was realized/accepted by the scientific 

community only during the recent decades. However, it 

must be noted that the previous authors [3], also stated 

that the optimal management of coastal eutrophication 

requires controlling both N and P, since primary 

production might be P-limited in some systems. In their 

study Zhang et al. [4] are evaluating the impact of 

dissolved inorganic nitrogen (DIN) pollution in coastal 

waters adjacent to Hainan Island (China) and reported 
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that when the Eutrophication Index (EI) was increased 

then the contribution of chemical oxygen demand and 

dissolved inorganic phosphorus may become more 

important than the DIN contribution to eutrophication.  

Nowadays, data-driven models are extensively used in 

almost every scientific area (e.g., medicine [8], 

economics [9]).  Data-driven models produce 

relationships/associations based on machine learning 

methodologies, between the input parameters and the 

target-output parameter, without the need to consider the 

underlying processes that govern the modelled system. 

In contrast, the process-based models are based on 

mathematical/physical equations/principles. Therefore, 

data-driven models are suitable for modelling systems 

where process-based models cannot be built due to the 

lack of knowledge about the system’s process [10]. 

According to Quetglas et al. [11] the relationships 

between ecological parameters are often non-linear or 

even unknown. Additionally, ecological data are usually 

noisy, non-linear, complex and affected by internal 

relationships between the parameters [12]. Artificial 

Neural Networks (ANNs) -which are data-driven 

models- are suitable for modelling the non-linear and 

complex aquatic systems, producing results highly 

accurate (e.g., [13]).  

Several water quality modelling studies utilizing 

ANNs are created during the last decades (e.g., [5, 12-

15]). For example, in the study of Salami-Shahid and 

Ehteshami [16] two ANNs were developed to predict the 

DO and salinity parameters using variables from a data-

recording station in the San Joaquin River (USA). 

Similarly, in their study Huo et al. [17] developed four 

ANNs capable to predict the DO, Chlorophyl-a (Chl-a), 

total nitrogen (TN) and secchi disk depth (SD) 

parameters in Lake Fuxian, the deepest lake of southwest 

China.  

In this modelling study three different ANNs were 

created, each of them calculating nitrite, nitrate, and 

ammonium levels for the coastal waters of Cyprus. 

Additionally, the fact that the created ANNs models are 

regional models, which take into consideration the 

unique environmental characteristics of Cyprus coastal 

water quality parameters [13] enables us to utilize these 

ANNs to investigate specialized management scenarios 

regarding the DIN parameter for the coastal water of 

Cyprus.  Sensitivity analysis was calculated for each of 

these ANNs to investigate the impact/role of each input 

parameter. The results of sensitivity analysis were 

implemented to identify possible 

mechanisms/relationships between the DIN parameter 

and the rest of the monitored water quality parameters. 

In conclusion, the created ANNs may be used for DIN 

management/control purposes, but also provided us 

useful information about the DIN species interactions 

with the rest water quality parameters. 

2 Methodology  

2.1. Study Area and Data Sampling 

The Republic of Cyprus is an island located in the 

Eastern Mediterranean, specifically in the Levantine 

Basin. The Levantine Basin is one of the most 

oligotrophic seas worldwide and exhibits ultra-

oligotrophic and P-starved conditions [18]. The Levant’s 

Sea is characterized by high mean surface water 

temperatures, with an annual range from 16 °C in the 

winter up to 26 °C in the summer period.  

The following environmental parameters were 

measured: ammonium (NH4
+); nitrite (NO2

-); nitrate 

(NO3
-); ortho-phosphates (PO4

3-); salinity; dissolved 

oxygen (DO); pH; electrical conductivity (EC); water 

temperature (WT) and Chl-a. Totally 1552 samples were 

collected sporadically during the monitoring period 

2000-2021, from 49 coastal stations in Cyprus (Figure 1) 

by the Department of Fisheries and Marine Research 

(DFMR) of the Cyprus Republic, as part of the 

implementation of Water Framework Directive (WFD) 

2000/60/EC, the Marine Strategy Framework Directive 

(MSFD) 2008/56/EC and the Nitrates Directive 

91/676/EEC as well as  Regional Sea Conventions, such 

as the Barcelona Convention for the protection of the 

Mediterranean Sea. 

 

Fig. 1. Satellite map of Cyprus, where the sampling stations are 

marked in green colour.  

2.2 Artificial Neural Networks Development 

Feed-Forward ANNs were developed for the needs of 

this modelling study, predicting NO2
-, NO3

-, and NH4
+ 

levels respectively. The multilayer Feed-Forward ANNs 

are capable to approximate any continuous function and 

are characterized as “universal approximators” [19]. The 

multilayer Feed-Forward ANNs trained with the 

backpropagation algorithm are the most widely used 

ANNs in ecological applications [11].   

Initially all the missing values in the data set was 

linearly interpolated, since a large proportion of the data 

was missing values (~15%), because by 

ignoring/deleting the missing values the sample size is 

reduced and therefore the ANN’s performance is 

decreased. For avoiding ANN’s bias, because of the 

different ranges of magnitudes between the variables, the 

data were normalized.  The Min-Max normalization was 

used, where the data are scaled into the range (0, 1). As 

stated by Eesa and Arabo [20] using data normalization -

like scaling into the range (0,1)- can improve the 

performance of the ANN.   
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The method of backword elimination or else network 

trimming is applied to find the optimal set of input 

parameters for each of the three ANNs.  As explained by 

Muttil and Chau [21] the network trimming starts with a 

set containing all inputs, and sequentially deletes the 

input that reduces performance. The trial-and-error 

procedure was applied to calculate the optimal number 

of neurons in the hidden layer. The ANN’s training 

algorithm was the Levenberg-Marquardt (LM) 

algorithm. The data set was divided into training set 

(80%) and test set (20%) as required by the 

regularization method, which was applied to ensure that 

the model will not overfit the data. The ANN’s outputs 

are evaluated for the test set data, based on performance 

metrics like the correlation coefficient (r), the Root 

Mean Square Error (RMSE) and the Mean Absolute 

Error (MAE) [22]. Finally, the sensitivity analysis was 

calculated with the use of the perturbation method, 

which calculates the effect of the inputs for a small 

fluctuation/ perturbation on the simulated output (more 

details can be found in the study of Muttil & Chau [21]). 

The development of ANN models and data analysis were 

utilized with the use of MATLAB software.  

3 Results  

3.1. Ammonium model’s results 

An ANN with the 7-6-1 topology was chosen after 

applying the trial-and-error procedure and the input 

parameters were the DO, pH, WT, EC, salinity, Chl-a 

and PO4
3-. The inputs were determined based on the 

backword elimination method, from a data set containing 

the following candidate input parameters: DO, pH, WT, 

EC, salinity, Chl-a, NO2
-, NO3

- and PO4
3-.  The ANN 

performed well for the test set, since the r=0.95 and the 

MAE= 0.002. The graphical illustration between the real 

and the predicted data (Figure 2) verified that the created 

ANN is a good predictor of the NH4
+ parameter.  

 

Fig. 2. Graphical illustration between the monitored NH4
+ 

values against the ANN values (where the real data are 

illustrated with cyan colour and the predicted data with red). 

Sensitivity analysis was calculated by applying the 

perturbation method, where the input parameters were 

fluctuated by a small amount of +8%. This perturbation 

number was chosen, in order to reflect realistic changes 

regarding the WT that could be anticipated over the next 

years due to global warming conditions [23] as indicated 

by global warning studies for the Eastern Mediterranean 

Sea [24]; and corresponds to an increase of WT about 1-

2 oC [23]. The sensitivity analysis results (Figure 3) 

calculated that the most influential parameter is the WT 

(-270.89%) followed by the DO (244.53%), pH 

(243.44%), EC (-159.62%), salinity (-30.35%), Chl-a (-

5.01%), PO4
3- (2.02%).  

3.2. Nitrite model’s results. 

The modelling procedure applied to predict the NO2
- 

levels, was similar with the one applied for the NH4
+ 

model. An ANN with the 7-6-1 topology had the better 

performance among several tested topologies and the 

input parameters were the DO, pH, WT, EC, salinity, 

Chl-a and PO4
3-. The inputs were determined based on 

the backword elimination method, from a data set 

containing the following candidate input parameters: 

DO, pH, WT, EC, salinity, Chl-a, NH4
+, NO3

- and PO4
3-.   

 

Fig. 3. ANN’s sensitivity analysis results, where the input 

parameters were fluctuated by +8% and the associated change 

in NH4
+ level is calculated for each of the inputs. 

The NO2
- model had r=0.98 and MAE= 0.007 for the 

test set. The measured values and the predicted values 

(Figure 4) are having a good match. 

 

 
Fig. 4. Graphical illustration between the monitored NO2

- 

values against the predicted values (where the real data are 

illustrated with cyan colour and the predicted data with red). 

Sensitivity analysis was calculated by applying the 

perturbation method, where the input parameters were 

fluctuated by +8%. The sensitivity analysis (Figure 5) 

calculated that the most influential parameter is the WT (-

16.01%) followed by the pH (15.89%), DO (12.15%), EC (-

6.01%), salinity (-3.55%), PO4
3- (0.04%), Chl-a (0.02%).  
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Fig. 5. ANN’s sensitivity analysis results, where the input 

parameters were fluctuated by +8% and the associated change 

in NO2
- level is calculated for each of the inputs. 

3.3. Nitrate model’s results. 

The modelling procedure applied to calculate the NO3
- 

levels, followed the same steps used for modelling the 

NH4
+ and NO2

- parameters. An ANN with the 7-6-1 

topology was chosen after the trial-and-error procedure 

and the input parameters were the DO, pH, WT, EC, 

salinity, Chl-a and PO4
3-. The inputs were determined 

based on the backword elimination method, from a data 

set containing the following candidate input parameters: 

DO, pH, WT, EC, salinity, Chl-a, NH4
+, NO2

- and PO4
3-.  

The ANN’s performance was r=0.96 and MAE= 0.005 

for the test set. The measured values and the predicted 

values of the NO3
- parameter (Figure 6) were very 

similar. 

 
Fig. 6. Graphical illustration between the monitored NO3

- 

values against the predicted values (where the real data are 

illustrated with cyan colour and the predicted data with red). 

Sensitivity analysis was calculated by applying the 

perturbation method, where the input parameters were 

fluctuated by +8%. The sensitivity analysis (Figure 7) 

produced that the most influential inputs regarding the 

NO3
- parameter is the WT (-256.43%) followed by the 

pH (229.82%), DO (183.16%), salinity (-154.30%), EC 

(-43.48%), PO4
3- (5.81%), Chl-a (-5.44%). 

 

Fig. 7. ANN’s sensitivity analysis results, where the input 

parameters were fluctuated by +8% and the associated change 

in NO3
- level is calculated for each of the inputs. 

4 Discussion 

Coastal eutrophication is a global environmental 

problem, affecting many areas in Europe, China and 

North America [25]. According to Yang et al. [26] 

understanding coastal eutrophication’s mechanisms and 

identifying the associated influencing factors, is very 

important in order to addressing eutrophication problem. 

Nutrients inputs into the water column derived from 

human activities are the main cause of coastal 

eutrophication. The role of the DIN parameter regarding 

coastal eutrophication is catalytic. Therefore, data-driven 

models were developed for modelling the NO2
-, NO3

- 

and NH4
+ parameters.  Specifically, the algorithms 

developed for the needs of this modelling study were 

ANNs, since ANNs are considered advanced modelling 

tools suitable for modelling water quality parameters 

[27]. The created ANN models managed to simulate well 

the NO2
-, NO3

- and NH4
+ parameters and produced 

output values characterized by high accuracy (r>0.95).  

Sensitivity analysis was performed for each of the 

created ANNs. The ANNs sensitivity analysis revealed 

that the WT parameter is the most influential input for 

the NO2
-, NO3

- and NH4
+ parameters. The DIN’s 

concentration increase is associated with a reduction to 

the WT. This finding might be attributed to the winter 

upwelling phenomenon observed in coastal water in 

Cyprus [28].  During the winter upwelling (WT has 

lower values), nutrient rich waters emerge to the surface 

and the algal production is increased. Therefore, there is 

a positive relationship between the DIN and the Chl-a 

parameters.  

The pH parameter was calculated as the second most 

influential input for the created ANNs (taking into 

consideration, that the sensitivity analysis for the NH4
+ 

model produced very close values for the pH and DO 

parameters). As stated by Hansen [29] high pH values 

have been observed in some marine environments after 

the addition of nutrients.  Additional, high Chl-a values 

are linked with high pH values [30], therefore an indirect 

relationship between the DIN and the pH parameters 

exist. The DO parameter was found to be third most 

contributing input. The algal photosynthesis (therefore 

increased levels of the Chl-a parameter) results into 
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oxygen production [31]. Something that might explain 

the positive indirect relationship between the DO and the 

DIN, if we consider the effect of winter upwelling. 

Regarding the rest inputs no clear conclusion regarding 

their contribution can be extracted based on the 

sensitivity analysis calculations.  

It must be noted that the developed ANNs predicting 

the NO2
-, NO3

- and NH4
+ parameters, only needed the 

DO, pH, WT, EC, salinity, Chl-a and PO4
3- parameters 

as inputs (after applying network trimming). This is very 

important, particularly when only one of the NO2
-, NO3

- 

and NH4
+ parameters parameters is needed to be 

modelled. In that case, the created ANN can calculate 

the desired parameter without to be presented/know any 

of the rest DIN species parameters. In the future we aim 

to recalibrate the created ANNs based on a hybrid 

database (e.g., buoys and satellite data), aiming to 

forecast the DIN parameter in the wider region of 

Eastern Mediterranean. 

5 Conclusions 

Eutrophication is a serious environmental problem. It is 

associated mainly to anthropogenic activities, but also to 

climate change. The DIN parameter is considered as a 

key stressor to the coastal environment and promotes 

eutrophication. For that reason, the NO2
-, NO3

-, and 

NH4
+ parameters were modelled utilizing ANN models. 

The created models predicted the NO2
-, NO3

-, and NH4
+ 

parameters with high accuracy. Based on these ANNs 

several management scenarios can be examined, aiming 

to protect the coastal water in Cyprus. 
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