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Abstract. In this work we use Artificial Intelligence (AI) for the detection of faults in air quality 

measurements. This is crucial in large air quality monitoring networks in particular were fault detection can 

be a complex and time consuming process.  The proposed methodology encompasses several essential steps 

in anomaly detection. Data preprocessing ensures the quality and relevance of the data by applying 

techniques like data cleaning, outlier removal, and feature selection. The Isolation Forest model is trained 

using the pre-processed data, and appropriate hyperparameters are determined through cross-validation. 

Anomaly detection is performed using the trained model, allowing the identification of abnormal events or 

instances. The visualization of anomalies provides a clear representation of abnormal patterns, facilitating 

the interpretation and understanding of air quality data. The proposed methodology can help environmental 

agencies, researchers, and policymakers in identifying abnormal air quality events, enhancing the accuracy 

of monitoring systems, and facilitating timely interventions. This methodology can be applied to other 

industries also, to improve operations and reduce risk. 

1 Introduction  

Air quality is a critical aspect of public health and given 

the continuous increase in industrial activities, 

urbanization, and transportation, its monitoring and 

analysis is of paramount importance [1,2].  The adverse 

impacts of air pollution on respiratory diseases, 

cardiovascular disorders, and even cognitive function 

have led to a heightened awareness of the urgent need 

for effective air quality monitoring and control strategies 

[3]. 

Monitoring networks can consist of a large number 

of air quality measuring stations, which require 

continuous monitoring as due to equipment malfunction 

the coverage rate of measurements can be dramatically 

reduced due to delay in detecting abnormal values and 

possible faults [4]. Traditional methods of air quality 

monitoring involve deploying physical sensors at 

specific locations to measure pollutant concentrations. 

However, these methods often lack the ability to identify 

anomalies or abnormal patterns in real-time data [5].  

To address the above limitations, the integration of 

artificial intelligence (AI) techniques has emerged as a 

promising approach for detecting anomalies in air 

quality data [6-11]. 

An anomaly is a pattern in data that significantly 

deviates from the normal behaviour. Anomalies can 

occur due to various factors such as equipment 

malfunction, sensor failures, extreme weather conditions, 

or the occurrence of exceptional pollution events [12]. 

By identifying and addressing these anomalies promptly, 

it is possible to enhance the accuracy of air quality 

monitoring, improve public health response systems, and 

facilitate effective decision-making for environmental 

management. 

There are three main ways to create an anomaly 

detection model: unsupervised, supervised and semi-

supervised anomaly detection. In an unsupervised model, 

differences in one set of points are examined to detect 

points moving away from it. This method can detect 

anomalies in unlabelled datasets, significantly reducing 

the manual labelling of huge amounts of data for model 

training [13]. 

In recent years, AI-based anomaly detection methods 

have gained traction for their ability to automatically 

learn patterns and detect anomalies in complex and high-

dimensional datasets. AI methods leverage machine 

learning algorithms and statistical techniques to identify 

deviations from normal air quality patterns [14]. An 

algorithm that is promising in anomaly detection is the 

Isolation Forest algorithm [15]. 

The Isolation Forest algorithm is a machine learning 

technique based on the concept of isolation. It builds an 

ensemble of isolation trees that recursively partition the 

data until each instance is isolated or grouped together. 

The algorithm identifies anomalies by measuring the 

number of partitions required to isolate an instance, 

considering that anomalies are expected to be less 

frequent and thus require fewer partitions. Isolation 

Forest has demonstrated good performance in detecting 

anomalies in various domains, including air quality data 

analysis [9]. 
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However, it is important to note that the effectiveness 

of the anomaly detection methodology is highly 

dependent on the quality and representativeness of the 

data used. Accurate and comprehensive air quality data, 

including pollutant concentrations, meteorological 

conditions, and temporal information, is crucial for 

obtaining meaningful results. Furthermore, the selection 

and fine-tuning of hyperparameters, as well as the choice 

of appropriate features, can significantly impact the 

performance of the Isolation Forest algorithm in 

anomaly detection. 

In conclusion, the integration of AI techniques, 

specifically the Isolation Forest algorithm, offers a 

promising approach for detecting anomalies in air 

quality data. The goal of this research is to develop a 

methodology for detecting anomalies in air quality data 

using the Isolation Forest algorithm. The application of 

this methodology is a promising way to enhance air 

quality monitoring and improve public health response 

systems, and thus, enable effective decision-making for 

environmental management. 

2 Methodology  

Detecting data anomalies has been a very active research 

domain and it has many applications in industry, 

healthcare, finance and security [5]. Detecting air quality 

data anomalies using AI involves training a machine 

learning model to classify or predict air quality 

conditions based on historical data. Data preparation is a 

crucial step in detecting anomalies in air quality data 

using AI techniques. It involves ensuring the quality, 

relevance, and readiness of the data for further analysis. 

The method developed is shown in Fig. 1. 

 

Fig. 1. Diagram of system developed. 

For the work presented herein, we collected air 

quality data from reliable sources such as Environmental 

Monitoring Stations (EMS) and data stored in SQL 

databases in cloud. Next, using a web server capable of 

running python scripts, we run an application, hourly, 

developed to detect outliers in real time and warn the 

EMS personnel for possible equipment malfunction.  

In order to avoid cases where we simply have abnormal 

values that are real and not due to failures of the 

analysers, we placed a check for each analyser 

separately. The model developed calculates the abnormal 

values separately for each parameter (e.g. PM10, NOx, 

SO2, CO). Thus, for each parameter, a data set is created 

that includes the parameter and meteorological data, as it 

is known that abnormal values are associated with 

meteorological parameters. For each measured 

parameter, optimization was performed in order to find 

the best combination of hyperparameters that maximizes 

the model's ability to detect anomalies while minimizing 

false positives or false negatives. 

After gathering hourly historical data, the amount of 

which can be a function of the computing power and 

speed of the web server, we analysed and pre-processed 

the collected data. This procedure involved handling 

missing values, removing outliers, normalizing or 

standardizing the data, and encoding categorical 

variables. The performance of these data preparation 

steps allowed us to ensure that the data used for anomaly 

detection is of high quality, relevant, and appropriately 

transformed. Thus, a strong foundation for the 

subsequent stages was ensured, including model training, 

anomaly detection, and visualization. Flowchart for the 

methodology is shown in Fig. 2. 

 

Fig 2. Flowchart for the methodology of detecting anomalies in 

air quality data using Isolation Forest 

Afterwards, we trained the Isolation Forest model 

using the training data. The model learns the patterns and 

characteristics of normal data during this stage. The 

training process involves feeding the input variables to 

the model and allowing it to learn the underlying 

structure of the data. The algorithm constructs an 

ensemble of isolation trees based on random splits and 

isolates instances that require fewer partitions, indicating 

potential anomalies. 

Additionally, in order to evaluate the performance of 

the model on unseen data we split the prepared data into 

training and testing sets. The training set was used to 

train the anomaly detection model, while the testing set 
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was used for evaluation. Finally, in case of detecting a 

possible failure, an email was automatically sent to 

predefined recipients in order to check for possible 

failures.  

The proposed system helps to improve the accuracy 

and reliability of the anomaly detection system and 

facilitates a more effective decision-making in air quality 

monitoring and management. 

2.1 Performance analysis 

We used Python version 3.7 as the programming 

language with the following libraries. Sklearn: library for 

machine learning and Isolation Forest implementation; 

Pandas: data analysis library and manipulation tool; 

Numpy: library for scientific computing; Matplotlib: a 

visualization library. The raw data used for analysis were 

made available from Environmental Centre in region of 

west Macedonia, Greece [16].  

Table 1. Statistics of model training data 

  PM10 TEMP RH WS WD 

count 2419 2419 2419 2419 2419 

mean 18 16 67 1 181 

std 6.53 3.79 16.77 1.41 95.64 

min 3 8.9 23 0.1 1 

25% 14 12.8 55 0.4 104.5 

50% 18 15.6 65 0.9 188 

75% 21 19.2 81 2.2 250 

max 67 25.6 95 7 360 

 

Table 1 provides an example of dataset analysis, 

which includes inhalable particulate matter (PM10) with 

meteorological parameters such as air temperature 

(TEMP), relative humidity (RH), wind speed (WS) and 

wind direction (WD).  

2.1.1 Data Preprocessing 

The first step towards preprocessing includes replacing 

the Null values with the sliding mean values. We 

identified and handled outliers using statistical methods 

and domain knowledge to ensure the data was in a 

suitable format for further analysis. Then we selected the 

most relevant features for anomaly detection considering 

factors such as the impact of each feature on air quality. 

Then we used correlation analysis, feature importance 

and domain expertise to identify the most informative 

features. Table 2 contains Pearson correlation coefficient 

values between features. In this data set, the correlation 

of PM10 with meteorological parameters is small, which 

can however be improved if the data correlation takes 

place over a longer period.   

 

 

 

 

Table 2. Corelation Coefficients 

  PM10 WS WD TEMP RH 

PM10 1.00 -0.02 0.17 0.13 0.07 

WS -0.02 1.00 -0.05 0.45 -0.44 

WD 0.17 -0.05 1.00 -0.04 0.13 

TEMP 0.13 0.45 -0.04 1.00 -0.91 

RH 0.07 -0.44 0.13 -0.91 1.00 

 

 

Fig. 3. KDE plot of variables used for model 

Subsequently, we calculated the Kernel Density 

Estimation (KDE) which is a non-parametric technique 

used to estimate the probability density function (PDF) 

of a dataset. KDE provides a smooth estimate of the 

underlying distribution of the data and can be applied to 

describe the data in air quality analysis by visualizing the 

density of pollutant concentrations or other relevant 

features. Figure 3 shows the estimated density of the 

selected feature providing insights into its distribution 

and concentration levels. The shaded area represents the 

estimated density curve. The KDE plot allows us to 

visualize the shape, peaks, and variability of the data, 

which can help understand the underlying distribution 

and identify potential anomalies or unusual patterns. The 

y-axis in a density plot is the probability density function 
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for the kernel density estimation The x-axis is the value 

of the variable.  

2.1.2 Outlier Identification¶ 

In this part we checked for possible PM10 variable 

outliers. One method of finding outliers is using the 

boxplot. Boxplots are effective tools for outlier analysis, 

providing a concise summary of the data's spread and 

enabling quick identification of potential outliers. By 

analysing the boxplot, we were able to identify potential 

outliers in the dataset.  

 

Fig. 4. Boxplot of PM10 data  

To check whether the assumption read from the 

boxplot is true, we performed another analysis of outliers 

using the Isolation Forest method. Isolation Forest 

detects anomalies solely on the basis that anomalies are 

few and different data points and is performed without 

using distance or density measurements. The predicting 

method returns the outliers as 1 for the norm and -1 for 

the anomaly. The plot of the result is shown in Figure 5. 

The red points are detected anomalies with the model. 

The above analysis confirmed the information 

previously obtained from the boxplot.  

Once satisfied with the model's performance, we 

deployed it in the web server application. This involves 

integrating it into developed system that can process 

real-time air quality data and generate anomaly 

predictions. 

 

 

Fig. 5. Plot with anomalies detected with Isolation Forest 

method. 

3 Conclusions 

In conclusion, the detection of anomalies in air quality 

data using AI techniques, specifically the Isolation 

Forest algorithm, holds significant potential for 

improving air quality monitoring and management. This 

work has presented a methodology for detecting 

anomalies in air quality data, including data collection, 

preprocessing, model training and anomaly detection. By 

following this methodology, valuable insights can be 

gained to identify abnormal air quality events, prioritize 

interventions, and enhance decision-making processes. 

The integration of AI techniques, such as the Isolation 

Forest algorithm, addresses the limitations of traditional 

methods by automatically learning patterns and detecting 

anomalies in complex and high-dimensional air quality 

datasets. The Isolation Forest algorithm leverages the 

concept of isolation to identify anomalies, providing 

efficient and immediate results. Its ability to isolate 

instances by partitioning the data makes it suitable for 

detecting anomalies in various domains, including air 

quality data analysis. 

The proposed methodology encompasses several 

essential steps in anomaly detection. Data preprocessing 

ensures the quality and relevance of the data by applying 

techniques like data cleaning, outlier removal, and 

feature selection. The Isolation Forest model is trained 

using the preprocessed data, and appropriate 

hyperparameters are determined through cross-

validation. Anomaly detection is performed using the 

trained model, allowing the identification of abnormal 

events or instances. The visualization of anomalies 

provides a clear representation of abnormal patterns, 

facilitating the interpretation and understanding of air 

quality data. 

By successfully implementing the proposed 

methodology, several benefits can be achieved. First of 

all, anomalies in air quality data can be promptly 

identified, allowing for timely interventions and 

appropriate responses. This can lead to improved public 
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health outcomes by mitigating the impacts of abnormal 

air quality events on individuals and communities. 

Secondly, accurate anomaly detection enhances the 

overall accuracy and reliability of air quality monitoring 

systems, providing more reliable information for 

environmental agencies and policymakers. And finally, 

the visualization of anomalies offers an intuitive way to 

comprehend and communicate complex air quality data, 

aiding in decision-making processes and public 

awareness. 

It's important to note that the specific implementation 

details and choice of algorithms may vary depending on 

the nature of the air quality data and the desired 

detection objectives. 

Future research in this field can explore the 

integration of additional AI techniques, such as deep 

learning models, for more advanced anomaly detection 

in air quality data. Additionally, the development of 

ensemble methods or hybrid models that combine 

multiple anomaly detection algorithms can potentially 

improve detection accuracy and robustness. Moreover, 

the utilization of real-time or streaming data can enable 

the detection of anomalies in near real-time, providing 

more timely and dynamic information for decision-

making processes. 
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