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Abstract. Structures made from recycled aggregate concrete are 
exposed to high temperatures during fire scenarios which degrade their 
mechanical properties. Hence, this study investigated the residual 
mechanical properties of recycled aggregate concrete (RAC) 
containing ground granulated blast furnace slag (GGBS) after exposure 
to elevated temperatures. 21 experimental runs for design mix of RAC 
considering recycled coarse aggregate (RCA) replacement of natural 
coarse aggregate at 50, 75, and 100%, GGBS replacement of cement 
at 0, 20, 40, and 60% and water to binder ratio at 0.4 and 0.5 levels 
were used. The residual mechanical properties of RAC including 
compressive strength, splitting tensile strength, and elastic modulus 
were determined through laboratory experimental tests at room 
temperature (about 25℃) and after exposure to elevated temperatures 
of 200, 400, 600, and 800℃. Experimental results showed that residual 
mechanical properties of RAC decreased with increasing temperatures 
but their resistance to degradation was significantly enhanced with the 
addition of GGBS at 40% GGBS content. The novel model developed 
for the prediction of residual compressive strength of RAC has high 
prediction accuracy based on the performance metrics used to evaluate 
the model performance. The model has p-values less than 0.0001, a 
high R² value of 0.9781, a low root mean square error (RMSE) of 1.456 
and mean absolute percentage error (MAPE) of 0.2287. Overall, the 
study contributed immensely to the knowledge of RAC as a sustainable 
alternative to normal concrete in areas prone to exposure to high 
temperatures which will significantly aid the effective fire safety 
design of structural members produced with recycled aggregate 
concrete.  

 
*Corresponding author: babalolaolusolaemmanuel.st@tdtu.edu.vn 

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons 

Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/).

E3S Web of Conferences 437, 03003 (2023)
IConGEET2023

https://doi.org/10.1051/e3sconf/202343703003

mailto:babalolaolusolaemmanuel.st@tdtu.edu.vn


1     Introduction 
The use of recycled concrete aggregate (RCA) as aggregate in concrete production is one 
of the ways being adopted to mitigate the environmental depletion arising from sourcing 
natural aggregate for concrete production [1], and solving waste disposal challenges 
posed by large amounts of construction and demolition waste [2]. However, RCA’s high 
water absorption, high porosity and low strength arising from micro-cracks and porous 
attached old cement paste contribute to reduced strength in recycled aggregate concrete 
(RAC).  Ground granulated blast furnace slag (GGBS) has been added to RAC mix 
constituent to enhance its strength and reduce the amount of cement used in the mix [3-
4].  

The exposure of recycled aggregate concrete structures to high temperatures during 
fire scenarios degrades their mechanical properties [5-6]. A key fire safety design 
requirement according to European standard, EN 1992-1-2 [7] is that the load bearing 
capacity of concrete exposed to high temperature due to fire can be assumed.  Researchers 
are recently more concerned with evaluating concrete residual mechanical properties 
which are usually carried out by subjecting concrete samples to elevated high 
temperatures in a controlled furnace to simulate the effect of high temperatures in real 
building fire conditions [8-10]. These mechanical properties mainly include compressive 
strength, tensile strength, and modulus of elasticity which change substantially with the 
degree of exposed temperature [10]. 

The reliability of continuous usage of concrete exposed to high temperatures depends 
on its post fire residual strength performance. The use of RCA and GGBS in concrete 
mix is on an increasing trend [11-12]. Hence, it is important to assess and understand the 
mechanical strength performance of RAC containing GGBS after exposure to elevated 
temperatures. Moreover, the development of a prediction model that can accurately 
estimate post fire compressive strength of RAC containing GGBS will not only help save 
time that may have been expended on carrying out experimental work but also contribute 
significantly to the design of structural members produced with recycled aggregate 
concrete subjected to high temperatures.  

2     Methodology  

2.1  Material Collection and Characterisation 
RCA used in this study was obtained from crushed reinforced concrete beams used for 
flexural strength tests. The particle size of RCA after crushing ranges from 5 - 22 mm 
with a nominal maximum size of 22 mm. Ordinary Portland cement (Type I) and GGBS 
of grade S95 were used as binders. The GGBS has a specific gravity of 2.8, fineness 
(Blaine) of 5000 cm2/g and 28 days strength activity index of 96.  Natural coarse 
aggregates and fine aggregates (river sand) were obtained from a construction site in Ho 
Chi Minh City as a representative of the common natural aggregate types used for 
construction works in Vietnam. Laboratory tests were carried out to determine the 
physicomechanical properties of aggregates: RCA has dry rodded density (1450kg/m3), 
specific gravity (2.45) and water absorption (4.41%); Natural coarse aggregate has dry 
rodded density (1580kg/m3), specific gravity (2.75) and water absorption (1.22%). The 
maximum aggregate size of aggregate used is 22 mm.  
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2.2  Preparation of recycled aggregate concrete specimens 

The mix constituent for 21 experimental runs of RAC containing GGBS was developed. 
RCA was used to replace natural aggregates at 50, 75, and 100% levels. GGBS 
replacement levels of cement were at 0, 20,40 and 60%. The water binder ratio used for 
the mix is 0.4 and 0.5.  The proportions of aggregates and binder quantities in kg/m3 were 
estimated following ACI 211.1-91 [13] standard for normal strength concrete. 420 
samples were prepared from the 21 experimental runs, 210 were tested for compressive 
strength and modulus of elasticity, and the remaining 210 samples were tested for 
splitting tensile strength. The average of two samples results obtained for the same mix 
design that is exposed to the same temperature was recorded as the final value.  

2.2.1 Thermal loading on RAC specimens 

The automatic controlled electric furnace with a heating capacity of 1000℃ was used to 
heat RAC specimens. The specimens were placed in the furnace and heated to targeted 
temperatures of 200, 400, 600, and 800℃. The furnace temperature was maintained for 
2 hours after heating specimens to targeted temperature to coordinate the furnace 
temperature with that of the core of RAC specimens. Thereafter, the furnace was turned 
off and its door opened for the specimens to cool down to ambient temperature.  

2.3  Mechanical strength testing of RAC  

Compressive strength, splitting tensile strength, and modulus of elasticity tests were 
carried out on RAC specimens after they had been subjected to targeted elevated 
temperatures. The specimens were tested after being stored at ambient temperature for 7 
days to ensure the core of specimens cooled down to room temperature [14]. A 1000 kN 
UTEST Universal testing machine (UTM-6100.SVD2) was used for the compressive 
strength test following ASTM C39 [15] standard, splitting tensile strength following 
ASTM C496 [16] standard, and modulus of elasticity test following ASTM C469 [17] 
standard. 

The tested residual mechanical strength of RAC containing GGBS was analysed 
based on their absolute residual strength values and relative residual strength values. The 
residual compressive strength of RAC is the retained compressive strength in a specimen 
after being subjected to high temperature. The relative residual compressive strength 
value was estimated using Equation 1. The same approach was used for estimating 
relative residual splitting tensile strength and modulus of elasticity.   

RAC =  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠ℎ 𝑐𝑐𝑐𝑐𝑠𝑠𝑟𝑟𝑐𝑐𝑠𝑠𝑐𝑐𝑟𝑟 𝑟𝑟𝑎𝑎𝑠𝑠𝑐𝑐𝑐𝑐 𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐 𝑠𝑠𝑐𝑐 ℎ𝑐𝑐𝑠𝑠ℎ 𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟𝑠𝑠𝑒𝑒𝑐𝑐𝑐𝑐 (𝑎𝑎𝑇𝑇𝑐𝑐) 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠ℎ 𝑟𝑟𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟𝑠𝑠𝑒𝑒𝑐𝑐𝑐𝑐 (𝑎𝑎𝑐𝑐) 

 × 100  (1) 

2.4  Development of prediction model 

Response surface methodology was adopted to develop prediction model for RAC 
residual compressive strength based on experimental results. Steps for model 
development in Design-Expert 12.0 software were followed to develop the prediction 
model. The parameters for the 105 data points of residual compressive strength of RAC 
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obtained from experimental results were randomly partitioned to 70% and 30% for 
training and validation purposes respectively. The developed model was validated by 
applying it for the prediction of residual compressive strength of collected experimental 
data for RAC specimens exposed to elevated temperatures from previous studies. 
Furthermore, the developed model performance was evaluated using different Statistical 
performance metrics including coefficient of determination (R2), root mean square error 
(RMSE), and mean absolute percentage error (MAPE).  

3     Result and Discussion 

3.1  Workability of RAC containing GGBS 

The slump values obtained for RAC-GGBS mixes with varying replacement levels of 
NCA with RCA, w/b ratios and GGBS replacements are presented in Figure 1. As 
expected, the slump value of RAC-GGBS increased with w/b ratio level. The addition of 
GGBS was observed to enhance the workability of RAC mixes, increasing GGBS 
replacement level from 20 to 40% leads to about 22, 14, and 6% higher slump values in 
RAC containing 50,75, and 100% RCA content respectively. An increased slump value 
in RAC mix due to the addition of GGBS is connected to better particle dispersion of 
GGBS compared to OPC [18]. Also, GGBS helps in filling up spaces within concrete 
aggregates resulting in less internal friction among concrete components and more 
flowable concrete [19]. It can be seen that the workability of RAC mixtures decreased 
with increasing RCA content. This can be attributed to the higher water absorption 
capacity of RCA due to their porous structure with opened cracks and the adhered 
attached mortar on RCA surface [20, 21]. The mean slump value of RAC containing 50, 
75 and 100% RCA content was estimated as 70, 62 and 50mm respectively.  

 
Fig. 1. Comparison of slump value of RAC mixes at different w/b ratio  
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3.2  Residual compressive strength of RAC 

Figure 2 shows the influence of RCA content and GGBS content on the residual 
compressive strength of RAC. The relative residual compressive strength of RAC with 
100% RCA (R100G0) was lower at an initial elevated temperature of 200 ℃ compared 
to RAC with 50 and 75 % RCA content but has higher relative strength at higher elevated 
temperatures. This is because higher non-uniform thermal stresses generated between 
natural aggregate and RCA at elevated temperatures resulted in faster compressive 
strength deterioration in RAC with 50% and 75% RCA content [22]. The addition of 
GGBS to RAC clearly enhanced its resistance to deterioration of compressive strength at 
elevated temperatures. The pozzolanic reaction between cement and GGBS aids more 
hydration process [23] leading to more thermally stabilized Calcium silicate hydrate (C-
S-H) gel formation and less Calcium hydroxide (Ca(OH)2) crystals formation. More 
thermally stabilized C-S-H gel formed in RAC-GGBS improved bonding between 
aggregates and cement paste and lesser C-S-H decomposition during exposure to high 
temperatures, thereby contributing to enhanced resistance to residual compressive 
strength deterioration. Shumuye [24] found out that normal concrete cast from 30% - 
50% slag replacement have more well-structured C-S-H gels and those with 30% slag 
showed better fire resistance to deterioration of mechanical properties compared to the 
other concrete groups 50 and 70% slag content. Experimental results in this study have 
shown that 40 % GGBS has higher resistance to strength deterioration at initial 
temperatures up to 600 ℃ while the addition of 20 % GGBS showed relatively better 
resistance to strength deterioration after exposure to 800 ℃ temperature. 

 
Fig. 2. Relative residual compressive strength of RAC with temperature  
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The residual compressive strength of RAC containing GGBS specimens mixed with 0.4 
w/b ratio was higher than their equivalent sample with 0.5 w/b ratio. A possible reason 
could be due to higher cement and GGBS contents in 0.4 w/b ratio mix which enhanced 
hydration process. Zega [25] and Khalifa [26] observed that an increased w/b ratio 
aggravates the rate of strength degradation in concrete exposed to high temperatures. The 
regression analysis for RAC-GGBS compressive strength degradation level with 
temperature is compared with that of the control sample in this study (R0G0) and Euro 
code 2, EN 1992-1-2  [7] residual compressive strength reduction factors in Figure 3. 
RAC samples containing GGBS showed a lower strength degradation rate compared to 
control samples and EN 1992-1-2 code compressive strength reduction factors for normal 
concrete exposed to high temperatures.  

 
Fig. 3. Strength degradation of RAC exposed to elevated temperature compared with code strength 
reduction factor for normal concrete. 
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deterioration of splitting tensile strength of RAC-GGBS subjected to high temperatures 
[29-30].  

 

Fig. 4. Residual splitting tensile strength of RAC samples at varying GGBS replacement levels 
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Fig. 5. Degradation of residual splitting tensile strength of RAC at different w/b ratio 
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Fig. 6.  Residual modulus of elasticity RAC-GGBS exposed to different elevated temperatures  
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respectively.  
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                                                                                                                           (2) 

where: f′c is the residual compressive strength of concrete (output), and variable, A is 
RCA replacement, B is GGBS replacement, C is the w/b ratio, D is the 
compressive strength of concrete at room temperature, and E is the exposed 
temperature level 
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Fig. 7. (a) Scatter plot for model predicted vs actual values of RAC residual compressive strength 
(b) Response surface for RAC residual compressive strength exposed to elevated temperatures   
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3.5.1   Evaluation of model performance 

Statistical performance metrics including coefficient of determination (R2), absolute 
error, mean absolute percentage error (MAPE), relative error, and root mean square error 
(RMSE) were used to assess the developed model by applying it to collected experimental 
results of RAC exposed to elevated temperature from literature. The error margin in the 
model predicted values and actual experimental values were used to evaluate each 
performance metric according to equations 4.13 to 4.16. The results of the developed 
prediction model performance metrics are presented in Table 1. The model has a high R² 
value of 0.9781, a low root mean square error (RMSE) of 1.456 and a low mean absolute 
percentage error (MAPE) of 0.2287 indicating good model performance in predicting the 
residual compressive strength of RAC-GGBS exposed to elevated temperature. Similar 
metrics were used for the evaluation of performance of models developed for predicting 
residual mechanical properties of concrete exposed to high temperatures in previous 
published studies [41][42]. 

Table 1. Performance metrics for the predicted model 

Performance indicators                            Values 

R2 0.9781 

Absolute error (MPa) <  2.0 

Relative error (%) -27.9 to 22 

MAPE 0.2287 

RMSE 1.456 

4    Conclusion 
The workability of RAC is improved with the GGBS addition and RAC containing GGBS 
showed better post fire mechanical strength performance compared to RAC without 
GGBS. The resistance to degradation of RAC residual mechanical properties is enhanced 
more at 40% GGBS and RAC specimen mixed with 0.4 w/b ratio retained higher residual 
strength than when mixed with 0.5 w/b.  Generally, the degradation of residual 
mechanical strength of RAC is dependent on the content levels of RCA, GGBS and w/b 
ratio used in the mix. Furthermore, experimental results revealed that lower exposed 
temperatures up to 400℃ do not constitute a major threat to the post fire mechanical 
performance of RAC blended with GGBS unlike the severe residual strength degradation 
observed in normal concrete and RAC without GGBS addition at these lower elevated 
temperatures. The novel model developed in this study has high prediction accuracy, 
model predicted values well fit the actual experimental output with low errors, indicating 
high reliability of the developed model.   
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