# Research and Selection of Sorbents for Volatile Organic Compounds (VOC) Sampling Tubes

Junyann Hu<sup>a\*</sup>, Jinna Wu<sup>b</sup>, Qian Yao<sup>c</sup>, Chong Wang<sup>d</sup>, Lixuan Li<sup>e</sup>, Chuanjie Li<sup>f</sup>

CATARC Automotive Test Center (Tianjin) Co., Ltd., Tianjin 300300, China

**Abstract**—Volatile organic compounds (VOCs) are common emitting substances in vehicle interior parts and materials, with a wide range of boiling points (50-250°C) and a polarity range ranging from medium to non-polar, at least 200 species. Currently, VOC sampling mainly uses Tenax TA sorbent for collection, which has good stability and is suitable for weakly polar to non-polar substances between C6-C16. But there are many types of VOC substances, and each substance has its unique characteristics. Tenax TA is not suitable for all substances, and it is not the best sorbent choice for substances with medium polarity or low carbon number. In recent years, the vehicle and indoor environmental standards are open to the selection of sorbent, no longer limiting the type of sorbent sorbent, and more sampling tubes mixed with different sorbent types have emerged to achieve the best sampling results. After summarizing the common emitted substances in the car, this article selects 6 common types of sorbents or mixed sorbents for substance collection, and searches for the optimal sorbent type for each substance.

### 1. Introduction

The World Health Organization (WHO, 1989) defines Total Volatile organic compound (TVOC) <sup>[1][2]</sup> as a class of organic compounds whose boiling point ranges from 50°C to 260°C, the saturated Vapor pressure at room temperature exceeds 133.32 Pa, and they exist in the air as vapor at room temperature. According to the chemical structure of volatile organic compounds, they can be further divided into 8 categories: alkanes, aromatics, olefins,

halohydrocarbons, esters, aldehydes, ketones, and other compounds.

The main sampling method for volatile organic compounds (VOCs) in China is Tenax TA packing sorbent. However, the latest testing standard GB/T18883-2022 "Standards for indoor air quality" uses Tenax TA or equivalent packing sorbent tubes for VOC sampling. In the standard ISO16000-6:2021, VOC is sampled through active sorbent, and the sorbent packing is no longer specified. Different VOC substances can be sampled using more suitable sorbents, Refer to Table 1 and Table 2.

|                                                                                               | Tab                 | le 1 Foreign VOC Main Sta          | indards and Scope of Application                      | [3][4][5][6]                                        |                        |  |
|-----------------------------------------------------------------------------------------------|---------------------|------------------------------------|-------------------------------------------------------|-----------------------------------------------------|------------------------|--|
| NO.                                                                                           | Standard number     | Sampling method                    | Test method                                           | substance                                           | ces                    |  |
| 1                                                                                             | ISO16000-6-2021     | Solid sorbent/unlimited<br>sorbent | Gas chromatography-mass spectrometry                  | VOC                                                 |                        |  |
| 2                                                                                             | EN ISO 16017-1-2000 | Tenax TA                           | Gas chromatography/gas chromatography-mass spectromet | ry VOC                                              |                        |  |
| 3                                                                                             | EPA TO-1            | Tenax TA                           | Gas chromatography-mass<br>spectrometry               | Non polar organic<br>with boiling points<br>and 200 | s between 80           |  |
| 4                                                                                             | EPA TO-17           | Solid sorbent/unlimited<br>sorbent | Gas chromatography-mass<br>spectrometry               | VOC                                                 |                        |  |
| Table 2 Main Domestic VOC Standards and Scope of Application <sup>[7][8][9][10][11][12]</sup> |                     |                                    |                                                       |                                                     |                        |  |
| NO.                                                                                           | Standard number     | Sampling r                         | nethod                                                | Test method                                         | substances             |  |
| 1                                                                                             | HJ583-2010          | Tenax TA                           |                                                       | Gas chromatography                                  | Benzene<br>derivatives |  |
| 2                                                                                             | HJ584-2010          | Activated of                       | carbon                                                | Gas chromatography                                  | Benzene                |  |

<sup>a\*</sup>corresponding author email: hujunyan@catarc.ac.cn, <sup>b</sup>email: wujinna@catarc.ac.cn, <sup>c</sup>email: yaoqian@catarc.ac.cn, <sup>d</sup>email: wangchong@catarc.ac.cn, <sup>e</sup>email: lilixuan@catarc.ac.cn, <sup>f</sup>email: lichuanjie@catarc.ac.cn

|   |                |                                                                                                                                                                                                                                                                                                                                                                          |                                                               | derivatives |
|---|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------|
| 3 | HJ644-2013     | Stainless steel and glass materials, with an inner diameter of 6mm, equipped with Carbopack B, Carbopack C, and Carboxen 1000, with lengths of 13, 25, and 13 mm respectively                                                                                                                                                                                            | Gas chromatography-mass spectrometry                          | VOC         |
| 4 | HJ734-2014     | Combination 1 sorbent tube, equipped with Tenax GR and Carbopack B, with lengths of 30 and 25 mm, respectively. Combination 2 sorbent tubes, containing Carbopack B and Carboxen 1000, with lengths of 30 and 10 mm, respectively. Combination 3 sorbent tubes, containing Carbopack C, Carbopack B, and Carboxen 1000, with lengths of 13, 25, and 13 mm, respectively. | Thermal desorption gas<br>chromatography-mass<br>spectrometry | VOC         |
| 5 | GB/T18883-2022 | Tenax GC or Tenax TA or other sorbents                                                                                                                                                                                                                                                                                                                                   | Gas chromatography                                            | TVOC        |
| 6 | HJ/T400-2007   | Tenax TA                                                                                                                                                                                                                                                                                                                                                                 | Gas chromatography-mass<br>spectrometry                       | VOC         |
|   |                |                                                                                                                                                                                                                                                                                                                                                                          |                                                               |             |

The testing of volatile organic compounds (VOC) in the vehicle industry involves a wide range of fields, including vehicle VOC (HJ/T400, ISO12219-1), vehicle interior parts and materials VOC (ISO12219-2), materials (VDA278), and evaporative pollutant emissions (hydrocarbon emissions from non fuel systems in (CHINA VI)). There are many standards involved, and the testing methods and equipment are also different. However, the main sampling method is Tenax TA sorbent sorbent, without considering the different types of sorbents applicable to different substances. Currently, research and selection are conducted on the types of sorbents for VOC substances in vehicles.

From domestic and international VOC standards and sampling methods, In some standards, the selection of VOC sorbents has gradually shown an open state. The previously designated sorbents have gradually been transformed into different substances using different sorbents for sampling, and some sampling tubes have been filled with various combinations of sorbents, such as the appearance of combination tubes 1, 2, 3, etc. in standard HJ734-2014, It can select appropriate combination solid sorbents based on specific emitting substances. Specific types of sorbents can be refer to Table 3.

|                                                | Tab                     | ole 3 Specific Ap        | 1 1          |            |        |                                                                                   |
|------------------------------------------------|-------------------------|--------------------------|--------------|------------|--------|-----------------------------------------------------------------------------------|
| Туре                                           | Sorbent                 | Analyte rang             | Conditioning | Desorption | Hydro- | Notes                                                                             |
| турс                                           |                         | Analyte lang             | at max.(°C)  | max.(°C)   | phobic | Notes                                                                             |
| Weakly polar                                   | Carbopack C             |                          | 400          | 360        | Yes    |                                                                                   |
| graphitized carbon                             | Carbotrap C             | C8-C20                   | 400          | 360        | Yes    | Single VOC<1ng; 40/60 Surface area                                                |
| black                                          | CarboTenax Graph<br>2TD |                          | 400          | 360        | Yes    | 10m <sup>2</sup> /gmesh;                                                          |
| *** 11                                         | Tenax TA                |                          | 320          | 280        | Yes    | Single VOC1-2ng;Good inertness and                                                |
| Weakly porous<br>polymer                       | Tenax GR                | C6-C22                   | 320          | 280        | Yes    | analytical efficiency (narrow peak<br>shape);35-60 mesh;Surface area<br>$30m^2/g$ |
|                                                | Carbopack B             |                          | 400          | 360        | Yes    |                                                                                   |
| Weak - medium                                  | Carbotrap               |                          | 400          | 360        | Yes    |                                                                                   |
| type graphitized<br>carbon black               | CarboTenax Graph<br>1TD | C5-C14                   | 400          | 360        | Yes    | Surface area 100m <sup>2</sup> /g;                                                |
|                                                | CarboTenax Graph<br>4TD |                          | 400          | 360        | Yes    |                                                                                   |
| Medium strength<br>porous polymeric<br>sorbent |                         |                          |              |            |        | Single VOC<10ng;Background and<br>batch differences make sorbents rarely<br>used  |
|                                                | Carbopack X             |                          | 400          | 360        | Yes    | Single VOC<1ng; 40/60 mesh;                                                       |
| Medium to strong graphitized carbon            | CarboTenax Graph<br>5TD | 1,4-Butadiene<br>Benzene | 400          | 360        | Yes    | Surface area 240m <sup>2</sup> /g;                                                |
| black                                          | CarboTenax Graph<br>4TD | Delizene                 | 400          | 360        | Yes    | Poor desorption efficiency (wider spectral band)                                  |
|                                                | Carboxen 1003           |                          | 350          | 330        | No     | Single VOC<1ng; 40/60 mesh;                                                       |
|                                                | SulfiCarb               |                          | 350          | 330        | No     | Surface area 400-1000m <sup>2</sup> /g;                                           |
| Carbon molecular<br>sieve                      | Carbosieve SIII         | C2/3-C5/6                | 350          | 330        | No     | Poor desorption efficiency (broadened spectral band);                             |
|                                                | Carboxen 1000           |                          | 350          | 330        | No     | When the humidity is greater than 80, it affects the sorbent effect               |
| 01                                             | Glass wool              |                          |              |            | Yes    |                                                                                   |
| Other (non sampling end)                       | Stone wool              | C30                      |              |            | Yes    |                                                                                   |
| sumpring end)                                  | Glass bead              |                          |              |            | Yes    |                                                                                   |

From the types of common sorbent sorbents that there are many types of sorbents, and different sorbents are

suitable for different test ranges and use temperatures. Different substances can choose appropriate sorbent types

https://doi.org/10.1051/e3sconf/202344102008

according to their characteristics. If the composition of VOC is complex and the range of substances (temperature or polarity) is large, each sampling tube can be filled with 2-4 different sorbent types to achieve the best sampling effect.

## 2. Experimental Part

### 2.1 Instruments and reagents

### 2.1.1 Instrument and equipment

Thermal desorption gas chromatography-mass spectrometry (TD-GCMS); Model: Marks TD100 Agilent GC7890B MS5977B.

### 2.1.2 Main reagent

Dichloromethane (HPLC/UPLC grade).

### 2.1.3 Standard selection

According to the WTO definition of VOC, the categories include alkanes, aromatics, olefins, halohydrocarbons, esters, and other compounds (acids, alcohols, amines, etc.) (aldehydes and ketones are collected using DNPH sampling tubes and analyzed by liquid chromatography, which is not within the scope of this study). VOC standards are all pure products, and specific substances are shown in Table 5-8.

### 2.2 Instrument operating conditions [9]

Gas phase conditions: chromatographic column Agilent DB-624  $60m \times 0.32mm \times 1.4\mu m$ ; Column flow rate:

1mL/min Heating program: 40°C(2min) -3°C/min-92°C-5°C/min-160°C-10°C/min-260°C(10min)

Mass spectrometry conditions: voltage: 70ev; Scanning method: SCAN; Scanning range: 33-450amu; Scanning frequency: 3.5 times/second; The test results were matched based on the NIST2017 spectral library, and the qualitative and quantitative ions of each substance were confirmed.

### 2.3 Preparation of Standard solution

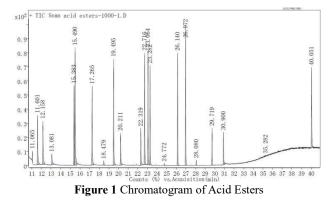
Accurately weigh 0.5000 g of each substance's single standard standard (accurate to 0.0001 g), dissolve it with dichloromethane and transfer it to a 100 mL volumetric flask for constant volume, prepare 5000 mg/L mixed standard stock solution, and store it in a refrigerator at 4°C. When using, dilute the standard stock solution with dichloromethane and prepare 1000 mg/L mixed standard solution for test and analysis.

### 2.4 Selection of sorbent

The selection of sorbent mainly considers medium polar and non polar substances with boiling points between (50-250)°C. The main characteristic of polar substances is hydrophilicity, and their test results are greatly affected by moisture content, making them unsuitable for sorbent sampling. Therefore, this sorbent selection mainly considers medium to non polar substances, and selects more common types of sorbents that can be purchased on the market.

Select 6 different types of monomers or combinations of sorbents based on the current standard's sorbent types and applicability. Please refer to Table 4 for specific types.

| No. | sorbent                                                                                                                                    | Analyte rang | Manufacturer | characteristics                                                                                      |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|------------------------------------------------------------------------------------------------------|
| 1   | Tenax TA                                                                                                                                   | C5-C22       | Marks Mix    | Good hydrophobicity, suitable for most                                                               |
| 2   | Tenax GR                                                                                                                                   | C5-C22       | Marks Mix    | non-polar substances                                                                                 |
| 3   | Combination 1 sorbent tube, equipped with Tenax GR<br>and Carbopack B, with lengths of 30 and 25 mm,<br>respectively                       | C6-C20       | CNW          | Good hydrophobicity, suitable for most non-polar substances                                          |
| 4   | Combination 3 sorbent tubes, containing Carbopack C,<br>Carbopack B, and Carboxen 1000, with lengths of 13,<br>25, and 13 mm, respectively | C3-C16       | CNW/Camsco   | For some polar and medium type<br>substances, the sorbent is good, but the<br>hydrophobicity is poor |
| 5   | Graphitized carbon                                                                                                                         | C5-C20       | Marks Mix    | Good hydrophobicity, suitable for most<br>non-polar substances                                       |
| 6   | Graphitized carbon mixing tube                                                                                                             | C3-C20       | Marks Mix    | Combination type, wide application range                                                             |


 Table 4 Different types of monomers or combinations of sorbents<sup>[3][13]14][15][16]</sup>

### 3. Results and discussion

The test material selection includes ester, alcohol ether, amine, alkane, olefin, Aromatic hydrocarbon, Cycloalkane and other material categories. Each type of substance shall be tested at least 6 times, and the test results shall be statistically significant. The test results are based on the maximum chromatographic peak area as the reference value, with the deviation being the difference between the peak area of other sorbent sorbents and the maximum value. The statistical result is (100 deviation value), and the closer the value is to 100, the smaller the deviation.

### 3.1 Acid ester substances

## 3.1.1 The chromatogram and substance list of ester substances are shown in Figure 1 and Table 5.



**Table 5** List of 18 Common Acids Esters in Vehicles<sup>[17]</sup>

|    | Table 5 List of 18                                   | S Common P    | ACIDS ESIC |           |         |
|----|------------------------------------------------------|---------------|------------|-----------|---------|
| Ν  | Substance                                            | CAS NO.       | RT         | Quantitat | Qualita |
| O. | Substance                                            | CAS NO.       | KI         | iveion    | tiveion |
| 1  | Ethyl acetate                                        | 141-78-6      | 11.601     | 43        | 61,70   |
| 2  | tetrahydrofuran                                      | 109-99-9      | 12.158     | 71        | 42,72   |
| 3  | Acetic acid                                          | 64-19-7       | 13.086     | 45        | 60      |
| 4  | Methyl<br>methacrylate                               | 80-62-6       | 15.384     | 69        | 41,100  |
| 5  | N-propyl<br>acetate                                  | 109-60-4      | 15.49      | 61        | 88,73   |
| 6  | 1, 4-dioxane                                         | 123-91-1      | 15.5       | 88        | 43,61   |
| 7  | Sec-butyl acetate                                    | 105-46-4      | 17.265     | 87        | 56,43   |
| 8  | Butyl acetate                                        | 123-86-4      | 19.495     | 56.1      | 43,73   |
| 9  | Isovalerate<br>butyrate                              | 107-92-6      | 20.215     | 60        | 73      |
| 10 | Butyl acrylate                                       | 503-74-2      | 22.314     | 60        | 87      |
| 11 | Butyl propionate                                     | 141-32-2      | 22.716     | 55        | 73      |
| 12 | Ethylene glycol<br>ethyl ether<br>acetate            | 590-01-2      | 23.064     | 75        | 57,87   |
| 13 | Ethyl 3-ethoxy<br>propionate                         | 111-15-9      | 23.277     | 59.1      | 72,87   |
| 14 | Ethylene glycol<br>diacetate                         | 763-69-9      | 26.135     | 117       | 71,101  |
| 15 | Carbonate allyl<br>ester                             | 111-55-7      | 26.972     | 86        | 73,116  |
| 16 | 2-ethylhexanoic acid                                 | 108-32-7      | 29.715     | 57        | 87,102  |
| 17 | 2,2,<br>4-trimethyl-1,<br>3-pentanediol<br>diacetate | 149-57-5      | 30.9       | 88        | 73      |
| 18 | Ethyl acetate                                        | 6846-50-<br>0 | 40.046     | 71        | 43      |

3.1.2 The test results of ester substances are as follows, and the source of the results is shown in Figure 2.

a) For ester like substances, the best sorbent tube is the Graphitized carbon mixing tube with deviations within 11%, which shows the most stable performance;

b) Tenax GR sorbent has a significant deviation in high boiling point substances, with other deviations within 10%, indicating good performance;

c) The performance of graphitized carbon adsorption tube is relatively extreme, and the adsorption effect of tetrahydrofuran, acetic acid, butyric acid, isovaleric acid and 2,2, 4-trimethyl-1, 3-pentanediol diacetate is poor, but it is the adsorbent with the highest peak area and can be used in a certain range;

d) Tenax TA has poor sorbent performance for low-carbon and highly polar substances, with deviations within 15% for other substances;

e) Combination tubes 1 and 3 have poor sorbent performance for esters, but some substances with deviations within 20% can be selected for use.

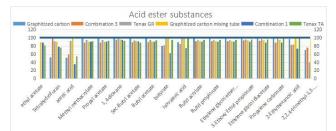



Figure 2 Sampling 100-deviation value of Acid Ester sorbents

#### 3.2 Alcoholic Ethers and Partial Ketones

# 3.2.1 Chromatograms and substance lists of alcohol ethers and some ketones are shown in Figure 3 and Table 6.

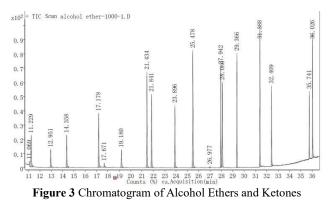



 
 Table 6 List of 18 Common Alcohol Ether and Ketone Substances in Vehicles<sup>[17][18]</sup>

| in venieles |                         |          |        |                    |                   |  |
|-------------|-------------------------|----------|--------|--------------------|-------------------|--|
| NO.         | Substance               | CAS NO.  | RT     | Quantit<br>ativeio | Qualit<br>ativeio |  |
|             |                         |          |        | n                  | n                 |  |
| 1           | 2, 3-butanedione        | 431-03-8 | 11.234 | 86                 | 43                |  |
| 2           | 2-methyl-1-propa<br>nol | 78-83-1  | 12.955 | 43.1               | 74,33             |  |
| 3           | 1-butanol               | 71-36-3  | 14.358 | 41.1               | 56                |  |
| 4           | 4-methyl-2-penta        | 108-10-1 | 17.178 | 58                 | 43,85             |  |

|    | none                                        |               |        |       |             |
|----|---------------------------------------------|---------------|--------|-------|-------------|
| 5  | Ethylene glycol                             | 107-21-1      | 17.676 | 62    | 43          |
| 6  | Propanediol                                 | 57-55-6       | 19.18  | 45.1  | 61          |
| 7  | Dibutyl ether                               | 142-96-1      | 21.434 | 57.1  | 87,41       |
| 8  | Propylene glycol<br>methyl ether<br>acetate | 108-65-6      | 21.836 | 72.1  | 58,87       |
| 9  | Ethylene glycol<br>butyl ether              | 111-76-2      | 23.896 | 57.1  | 87,45       |
| 10 | 1,<br>3-dichloro-2-pro<br>panol             | 96-23-1       | 25.473 | 79    | 45,59       |
| 11 | Diethylene<br>glycol<br>monomethyl<br>ether | 111-77-3      | 25.482 | 45.1  | 79,59       |
| 12 | 1, 2-propylene glycol diacetate             | 623-84-7      | 27.939 | 43    | 87          |
| 13 | 2-ethyl-1-hexano<br>l                       | 104-76-7      | 28.08  | 57.1  | 70,83       |
| 14 | Ethylene glycol<br>butyl ether<br>acetate   | 112-07-2      | 29.361 | 87    | 57,100      |
| 15 | 2-phenylethanol                             | 60-12-8       | 31.388 | 91    | 122         |
| 16 | Diethylene<br>glycol<br>monobutyl ether     | 112-34-5      | 32.408 | 45    | 57,75       |
| 17 | Hexadiol diethyl<br>ester                   | 141-28-6      | 35.741 | 157.1 | 111,12<br>8 |
| 18 | 2-butyl-1-octanol                           | 3913-02-<br>8 | 36.021 | 57.1  | 71,85       |

# 3.2.2 The test results of Alcohol Ethers and Ketones are as follows, and the source of the results is shown in Figure 4.

There are highly polar substances in alcohol ether substances, and different types of sorbents have different substances used. Overall, it can be seen that:

a) For alcohols and ethers, the best comprehensive sorbents are graphitized carbon and Tenax TA, with deviations within 20% except for a few substances from 1-2;

b) Graphitized carbon mixing tube is the sorbent with the highest maximum value, but its deviation exceeds 30% in high carbon substances;

c) The other four sorbent materials have corresponding usage conditions within different substance ranges.

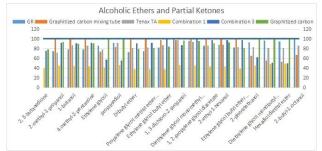



Figure 4 Sampling 100-deviation value of Alcohol Ethers and Ketones sorbents

#### 3.3 Amine substances

## 3.3.1 Chromatograms and substance lists of Amine are shown in Figure 5 and Table 7.

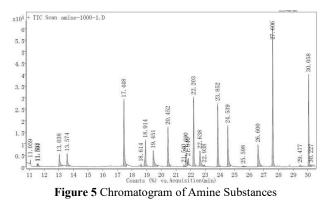



 Table 7 List of 16 Common Amine Substances in Vehicles<sup>[17][18]</sup>

| Table 7 List of 16 Common Amine Substances in Vehicles |                                       |               |            |            |          |  |
|--------------------------------------------------------|---------------------------------------|---------------|------------|------------|----------|--|
| Ν                                                      | 0.1                                   | CAS           | рт         | Quantitati | Qualitat |  |
| О.                                                     | Substance                             | NO.           | RT         | veion      | iveion   |  |
| 1                                                      | Triethylamine                         | 121-44-       | 13.5<br>6  | 86.1       | 101,28   |  |
| 2                                                      | Pyridine                              | 110-86-<br>1  | 17.4<br>44 | 79         | 52       |  |
| 3                                                      | 2-butanone oxime                      | 96-29-7       | 18.9<br>14 | 87.1       | 42,58    |  |
| 4                                                      | Morpholine                            | 110-91-<br>8  | 19.4<br>41 | 57.1       | 87       |  |
| 5                                                      | N,N-dimethylfor<br>mamide             | 68-12-2       | 20.4<br>52 | 73         | 44       |  |
| 6                                                      | Cyclohexylamine                       | 108-91-<br>8  | 21.6<br>86 | 56.1       | 99,43    |  |
| 7                                                      | N-ethylmorpholin<br>e                 | 100-74-<br>3  | 22.1<br>98 | 100.1      | 115      |  |
| 8                                                      | Dimethylacetami<br>de                 | 127-19-<br>5  | 23.8<br>52 | 87.1       | 44,72    |  |
| 9                                                      | N-butylamine                          | 109-73-<br>9  | 24.5<br>34 | 86.1       | 44,129   |  |
| 10                                                     | 1-methylimidazol<br>e                 | 616-47-<br>7  | 26.6       | 82         | 54       |  |
| 11                                                     | Aniline                               | 62-53-3       | 27.6<br>06 | 93         | 66       |  |
| 12                                                     | Bis<br>(dimethylaminoet<br>hyl) ether | 3033-62<br>-3 | 29.4<br>73 | 86         | 56       |  |
| 13                                                     | Methylpyrrolidon<br>e                 | 872-50-<br>4  | 30.0<br>58 | 99         | 44       |  |
| 14                                                     | Ethyl pyrrolidone                     | 2687-91<br>-4 | 31.6<br>01 | 98         | 113,70   |  |
| 15                                                     | Benzothiazole                         | 95-16-9       | 33.8<br>55 | 135        | 108      |  |
| 16                                                     | Caprolactam                           | 105-60-<br>2  | 35.3<br>01 | 113.1      | 55,85    |  |

# 3.3.2 The test results of Amine Substances are as follows, and the source of the results is shown in Figure 6.

Amine substances contain highly polar substances, and there is a significant deviation in the sorbent effect between different sorbents. For amine substances: a) The best comprehensive sorbents are graphitized carbon and Tenax TA, with deviations within 20% except for 1-2 individual substances;

b) The deviation of the Graphitized carbon mixing tube is within 20%, and this sorbent can be used according to different substances;

c) The other three sorbent materials have relatively poor performance, and it is recommended to use them as appropriate.

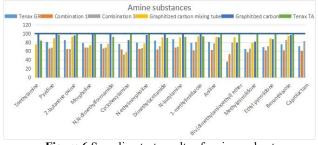



Figure 6 Sampling test results of amine sorbent

## 3.4 Alkanes, Cycloalkane, olefins, Aromatic hydrocarbon and other substances

3.4.1 Chromatogram and list of alkanes, Cycloalkane, olefins, Aromatic hydrocarbon and other substances are shown in Figure 7 and Table 8

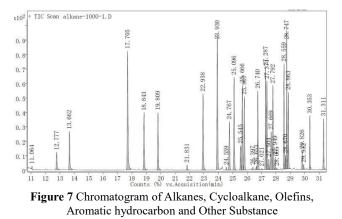



Table 8 List of Common Alkanes, Cycloalkane, Olefins, Aromatic hydrocarbon and Other Substances in Vehicles<sup>[16][17][18][19]</sup>

|    | nydrocarbon and Other Substances in Venicles <sup>10</sup> <sup>10</sup> <sup>10</sup> <sup>10</sup> <sup>10</sup> <sup>10</sup> |                |        |            |          |  |  |  |
|----|----------------------------------------------------------------------------------------------------------------------------------|----------------|--------|------------|----------|--|--|--|
| Ν  | Substance                                                                                                                        | CAS NO.        | RT     | Quantitati | Qualitat |  |  |  |
| Ο. | Substance                                                                                                                        | CABINO: INI    |        | veion      | iveion   |  |  |  |
| 1  | Cyclohexane                                                                                                                      | 110-82-7       | 12.777 | 84.1       | 56,69    |  |  |  |
| 2  | 1-heptene                                                                                                                        | 592-76-7       | 13.667 | 56.1       | 56,71    |  |  |  |
| 3  | 1-octene                                                                                                                         | 111-66-0       | 17.695 | 55.1       | 70       |  |  |  |
| 4  | Toluene                                                                                                                          | 108-88-3       | 17.71  | 91         | 65       |  |  |  |
| 5  | 2,4-Dimethylh eptane                                                                                                             | 2213-23-2      | 18.847 | 43.1       | 85,57    |  |  |  |
| 6  | 2,4-Dimethyl-<br>1-heptene                                                                                                       | 19549-87-<br>2 | 19.809 | 70.1       | 43,55    |  |  |  |
| 7  | O-xylene                                                                                                                         | 95-47-6        | 22.938 | 91.1       | 106      |  |  |  |
| 8  | Alpha pinene                                                                                                                     | 80-56-8        | 23.92  | 93.1       | 105      |  |  |  |
| 9  | Isopropyl<br>benzene                                                                                                             | 98-82-8        | 23.94  | 105        | 120      |  |  |  |
| 10 | Octamethylcyc<br>lotetrasiloxane                                                                                                 | 556-67-2       | 24.771 | 281        | 73,155   |  |  |  |
|    |                                                                                                                                  |                |        |            |          |  |  |  |

| 11 | Propyl<br>benzene                    | 103-65-1       | 25.096 | 91    | 120     |
|----|--------------------------------------|----------------|--------|-------|---------|
| 12 | 2,2,4,6,<br>6-pentamethyl<br>heptane | 13475-82-<br>6 | 25.666 | 57.1  | 41,71   |
| 13 | Beta-pinene                          | 127-91-3       | 25.807 | 93.1  | 69      |
| 14 | Carene                               | 13466-78-<br>9 | 26.74  | 93.1  | 77      |
| 15 | Butylcyclohex<br>ane                 | 1678-93-9      | 27.287 | 83.1  | 55,170  |
| 16 | Limonene                             | 138-86-3       | 27.378 | 68.1  | 93,79   |
| 17 | 1,2,3-trimethyl<br>benzene           | 526-73-8       | 27.79  | 105.1 | 105,120 |
| 18 | Naphthane                            | 91-17-8        | 28.559 | 138.1 | 67,82   |
| 19 | Phenol                               | 108-95-2       | 28.67  | 94    | 66      |
| 20 | Undecane                             | 1120-21-4      | 28.747 | 57.1  | 43,71   |
| 21 | Indene                               | 95-13-6        | 28.863 | 115   | 89      |
| 22 | Azodiisobutyr<br>onitrile            | 78-67-1        | 29.826 | 69.1  | 41,54   |
| 23 | 1,2,4,5-tetrame<br>thylbenzene       | 95-93-2        | 30.353 | 119.1 | 134     |
| 24 | Triethyl phosphate                   | 78-40-0        | 31.286 | 155   | 99      |
| 25 | 2,6-dimethylp<br>henol               | 576-26-1       | 31.311 | 107   | 122     |
| 26 | 2-methylnapht<br>halene              | 91-57-6        | 34.977 | 141.9 |         |
| 27 | Dimethyl phthalate                   | 131-11-3       | 38.038 | 163   | 77,194  |
|    | 2,6-di-tert-but                      |                |        |       |         |
| 28 | yl-4-methylph                        | 128-27-0       | 38.14  | 205.1 | 220     |
|    | enol                                 |                |        |       |         |
| 29 | 2,4-di-tert-but<br>ylphenol          | 96-76-4        | 38.638 | 191.1 | 206,57  |

3.4.2 The test results of alkanes, Cycloalkane, olefins, Aromatic hydrocarbon and other substances are as follows, and the source of the results is shown in Figure 8, 9.

Alkanes, alkenes and Aromatic hydrocarbon are mainly non-polar substances with boiling points between 50-250°C, and there are many types of sorbents that can be used:

a) For alkanes, olefins and Aromatic hydrocarbon, the best sorbent in comprehensive effect is graphitized carbon, Tenax TA, and mixed sampling tube 1. Except for 1-2 individual substances, other deviations are within 20%;

b) Most of the other three sampling tubes (boiling points between 100 and 200°C) have good sorbent effects, while only some substances have poor sorbent effects. They can be used according to specific substances for reference.

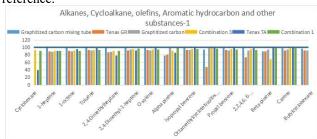



Fig.8 Sampling Test Results of sorbents for Alkanes, Cycloalkane, Olefins, Aromatic hydrocarbon and Other Substances-1

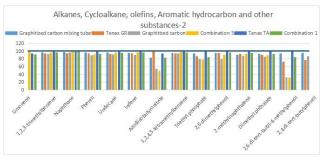



Fig.9 Sampling Test Results of sorbents for Alkanes, Cycloalkane, Olefins, Aromatic hydrocarbon and Other Substances-2

### 4. Conclusion

From the Conclusion, it can be seen that for substances with strong or medium polarity between boiling points (50-200)°C, Graphitized carbon mixing tube is the most effective sorbent, and its sorbent effect is the best; For substances with boiling points between 100 and 250°C, graphitized carbon and Tenax TA with weaker polarity have better effects; During the specific use process, appropriate sorbent types can be selected based on relevant substances. Achieving optimal testing results.

### References

- 1. Volatile Organic Compounds; Researchers at University of Florence Report New Data on Volatile Organic Compounds (The network of plants volatile organic compounds)[J]. Ecology Environment & Conservation.
- Environmental Pollution; Recent Findings from University of Trento Has Provided New Information about Environmental Pollution [Characterisation of volatile organic compounds (VOCs) released by the composting of different waste matrices][J]. Ecology Environment & Conservation.
- ISO16000-6:2021 Indoor air Part 6: Determination of organic compounds (VVOC, VOC, SVOC) in indoor and test chamber air by active sampling on sorbent tubes, thermal desorption and gas chromatoTenax GRaphy using MS or MS FID
- EN ISO 16017-1:2000 Indoor, ambiant and workplace air - Sampling and analysis of volatile organic compounds by sorbent tube/thermal desorption/capillary gas chromatoTenax GRaphy - Part 1: Pumped sampling
- 5. EPA TO-1 Method for the Determination of Volatile Organic Compounds in ambient Air Using Tenax ® Absorption and Gas ChromatoTenax Graphy/Mass Spectrometry (GC/MS)
- 6. EPA TO-17 Determination of Volatile Organic Compounds in ambient Air Using Active Sampling On to sorbent Tubes Compendium of Methods for the

Determination of Toxic Organic Compounds in ambient air

- 7. HJ583-2010 Ambient air.Determination of benzene and its analogies using sorbent adsorption thermal desorption and gas chromatography
- 8. HJ584-2010 Ambient air.Determination of benzene and its analogies by activated charcoal adsorption carbon disulfide desorption and gas chromatography
- 9. HJ644-2013 Ambient air Determination of volatile organic compounds Sorbent adsorption and thermal desorption / gas chromatography mass spectrometry method
- 10. HJ734-2014 Stati onary source emi ssi on -Determi nati on of vol ati l e organic compounds-Sorbent adsorpti on and thermal desorpti on gas chromatography mass spectrometry method
- 11. GB/T18883-2022 Standards for indoor air quality
- HJ/T400-2007 Determination of Volatile Organic Compounds and Carbonyl Compounds in Cabin of Vehicles
- Xing Yuewen. The Tenax tube sampling was used to analyze the TVOC in the indoor air by the secondary thermal analysis of thermal desorption instrument and gas chromatography — mass spectromet [J]. Environmental Protection and Circular Economy, 2021,41 (10): 73-76
- Li Jian. Research on the Influence of Tenax Ta Adsorption Tube on TVOC Detection [J]. China Science and Technology Information, 2014, No.507 (24): 36-37
- 15. Kuang Shaoning. Process control and optimization of the analysis method for determining TVOC concentration in indoor air using thermal desorption gas chromatography [J]. Guangdong Science and Technology, 2009, No.212 (10): 80
- Wang Xiaoxu, Qian Mingyuan, Zhang Xiaobo. Study on the Determination of Semivolatile Organic Compounds in Indoor Air by Ionic Liquid-Thermal Desorption Gas Chromatography/Mass Spectrometry [J]. Environmental Pollution and Prevention, 2021,43 (01): 73-78. DOI: 10.15985/j.cnki.1001-3865.2021-01.014
- Zhu Xiaoping, Ma Huilian, Zhu Xiuhua, et al. Determination of 67 volatile organic compounds in ambient air by thermal desorption gas chromatography-mass spectrometry [J]. Chromatography, 2019,37 (11): 1228-1234
- Cui Jin, Liu Chengxin, Chen Shan, et al. Detection of 35 Volatile organic compounds in children's floor mats using air bag sampling/thermal desorption gas chromatography-mass spectrometry [J]. Analytical Laboratory, 2020,39 (06): 700-705. DOI: 10.13595/j.cnki. issn1000-0720.020902

 Xue Junhai, Qiu Zhaojun, Lv Huanming, et al. Determination of Emission of 7 Terpenes from Furnitures by Thermal Desorption Analysis-gas Chromatography/Mass Spectrometry [J]. Forestry Industry, 2020,57 (07): 35-38. DOI: 10.19531/j.issn1001-5299-202007009