
The Impact of Agricultural Industry Agglomeration in Sichuan 
Province on Agricultural Carbon Emissions 

Yating Yang, Zhengyong Cao*, Maoling Huang, Anqi Jing 

College of Economics, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China. 

Abstract. This article utilizes panel data from 2005 to 2020, covering 21 cities in Sichuan Province, to 
empirically examine the relationship between agricultural industry concentration and carbon emissions. The 
findings reveal a clear inverted U-shaped relationship between agricultural industry agglomeration and carbon 
emissions. This relationship also exhibits temporal lag and regional disparities. In Sichuan Province, the link 
between agricultural industry agglomeration and carbon emissions follows this inverted U-shaped pattern, 
emphasizing the need for a comprehensive understanding of agglomeration's role in shaping 
emissions.Carbon emissions in agriculture display strong temporal path dependence, underscoring the 
importance of timely policies for carbon reduction. Local governments should adapt their strategies to 
regional peculiarities, promoting the growth of local agricultural industries through increased scale and 
agglomeration. A well-planned distribution of agricultural industries across regions is essential for sustainable 
development. 

1 Introduction1 
In September of the year 2020, China unveiled its 
ambitious dual carbon objectives: attaining a "carbon 
peak" by the year 2030 and subsequently achieving 
"carbon neutrality" by 2060. This strategic vision is poised 
to mitigate carbon emissions through the means of 
technological advancement, innovation, optimization of 
industrial structures, and the promotion of a lifestyle 
rooted in low-carbon principles, green ethics, and 
environmental sustainability. 
In conclusion, the trajectory of agricultural industry 
agglomeration is marked by distinct phases, each yielding 
its own set of impacts on agricultural carbon emissions. It 
is a matter of profound debate whether agricultural 
industry agglomeration, with its multifaceted implications, 
ultimately exerts a beneficial or detrimental influence on 
the trajectory of agricultural carbon emissions. 

2 Literature review 
To sift through the existing literature, we embark on our 
scholarly voyage by commencing with an exploration of 
agricultural carbon emissions themselves. The focal points 
of this inquiry encompass the realm of agricultural carbon 
emission accounting and its distinctive attributes. 

Initially, agricultural carbon emission accounting 
revolved around six pivotal facets: fertilization, pesticides, 
agricultural film, diesel consumption, irrigation, and 
tillage [1,2]. This approach predominantly concentrated 
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on the agricultural land's utilization within the farming 
milieu. However, as research endeavors evolved, the 
accounting paradigm broadened its scope. A burgeoning 
corpus of research now encompasses a comprehensive 
array of agricultural carbon sources, encompassing facets 
like agricultural land usage, the planting industry, 
livestock and poultry husbandry, among others [3,4]. 

Turning our gaze to the characterization of agricultural 
carbon emissions, the research terrain shifts to encompass 
an exploration of their spatiotemporal evolution 
characteristics [5-8], spatial spillover effects [9-11], 
threshold attributes [12,13], structural traits [14-15], and 
convergence phenomena [17,18]. 

2.1 The study hypothesis proposes 

Based on the combing of the existing literature, the 
following hypothesis is proposed in order to make a better 
conclusion. 

Hypothesis 1: Agricultural industrial agglomeration 
has an impact on agricultural carbon emissions by 
producing agglomeration effects such as scale effect, 
technology effect, structure effect, social effect and 
cumulative effect.That is, the relationship between 
agricultural industry agglomeration and agricultural 
carbon emission is "inverted u type". 

Hypothesis 2: Agricultural carbon emissions may have 
a certain time path dependence, that is, the agricultural 
carbon emissions in the early stage may have an impact on 
the later stage. 
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3 Data  

3.1 Variable selection 

This feat is achieved by the multiplication of the carbon 
emissions of each individual source by their corresponding 
carbon emission coefficients, which are, in turn, 
judiciously summed. Hence, the most current 
methodology embraced within this discourse predicates 
itself upon the ensuing blueprint: 

= iigC                    (1) 

In this paradigm, the symbol "C" assumes the mantle 
of representation for the overarching edifice of total 
agricultural carbon emissions. "G," on the other hand, 
stands as the venerable envoy, bearing the imprints of 
emissions emanating from each discrete carbon source. 
Meanwhile, the Greek letter "ɛ," with its intrinsic 
symbolism, serves as the custodian of the carbon emission 
coefficients, deftly charting the course for each unique 
carbon source enmeshed in this intricate narrative of 
environmental reckoning. 

3.2 Independent Variables (lq) 

The independent variable denoted as 'lq' signifies the 
agricultural industrial agglomeration index, a parameter of 
significant relevance. 

)//()/( kkkklq jiijij =             (2) 

The symbols "kij" and "ki" denote the provincial 
agricultural output value and the regional output value for 
the i-th province, respectively. Correspondingly, "kj" and 
"k" represent the national agricultural output value and the 
national GDP, respectively. It is noteworthy that the 
magnitude of "lqij" directly mirrors the degree of 
agglomeration within the agricultural industry. 

3.3 Control variables 

Agricultural carbon emission intensity, rural per capita net 
income (inc), agricultural industrial structure (struc), 
agricultural mechanization level (ma), planting industry 
structure (pis), animal husbandry industrial structure (ais), 
and industrialization level (il) may engage in intricate, 
mutually causal relationships, giving rise to endogenous 
dynamics. Consequently, these variables are incorporated 
as control factors, thereby enhancing the precision and 
robustness of our analytical model.  

Notably, the level of urbanization (ur) is ascertained by 
quantifying the proportion of the regional non-agricultural 
population to the total population. Additionally, we gauge 
regional economic development by evaluating the 
unchanged gross domestic product (GDP) per capita at 
year-end relative to the total population. The agricultural 
mechanization level (mach) is characterized by the 
cumulative horsepower of agricultural machinery 
employed, while the structural composition of industry 
(struc) is elucidated by the ratio of total agricultural output 
value to the aggregate output value encompassing 
agriculture, forestry, animal husbandry, and fisheries. 

3.4 The empirical model 

ititititit controllqlqcaac  +++++= −
2
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Esteemed scholars of yore delved into the intricate realm 
of the "inverted U"-shaped association between the 
aggregation of the agricultural industry and the emanation 
of agricultural carbon emissions. They did so by invoking 
the venerable Environmental Kuznets Curve framework, 
adorning it with the primary (lq) and secondary (lq2) terms 
of the agricultural industry.  

3.5 Data sources 

The wellspring of our original dataset finds its origins in 
an array of venerable tomes, including the provincial 
statistical yearbooks, "China Statistical Yearbook," "China 
Rural Statistical Yearbook," and the locally cherished 
"Sichuan Provincial Statistical Yearbook." Further 
insights were gleaned from the venerable annals of various 
city and state-level statistical compendia.  

4 Methodology 

4.1 Descriptive statistics of the variables 

Table 1. Descriptive statistics of the variables 
 N mean sd min max 
 336 256.8 188.5 10.38 857.1 
 336 1.194 0.603 0.0383 3.317 
 336 0.522 0.0872 0.317 0.740 
 336 0.512 0.152 0.233 0.896 
 336 7,550 5,559 1,374 33,195 
 336 0.556 0.276 0.132 1.416 
 336 0.361 0.0851 0.112 0.574 
 336 0.308 0.0895 0.105 0.581 
 336 0.172 0.172 0.0161 2.344 

 
Upon an attentive perusal of Table 1, it becomes evident 
that a tapestry of variables, including the degree of 
agricultural industrial agglomeration, the echelons of 
agricultural mechanization, the tier of regional economic 
development, and the dispersion gradient of per capita net 
income in rural areas, manifests with an air of magnitude.  

4.2 Unit root inspection 

To circumvent the specter of pseudoregression, we 
diligently subjected the dataset to rigorous scrutiny. 
Employing the discerning LLC test and the venerable 
Fisher-ADF test, we embarked on a quest to ascertain the 
stability of the sequence.  
 

Table 2. Root in unit and co-integration tests for variables 
variable LLC 

checkout 
The Fisher-
ADF test 

conclusion 

lncit 0.0000 0.5122 non-stationary 
Δlncit 0.0480 0.0000 steady 
lq 0.0135 0.5084 non-stationary 
Δlq 0.0000 0.0000 steady 
lq2 O.0045 0.9919 non-stationary 
Δlq2 0.0000 0.0000 steady 
lninc 0.6222 0.9785 non-stationary 
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Δlninc 0.0000 0.0000 steady 
il 0.9956 0.6427 non-stationary 
Δil 0.0000 0.0000 steady 
ais 0.3003 0.6037 non-stationary 
Δais 0.0000 0.0000 steady 
pis 0.9858 0.8303 non-stationary 
Δpis 0.0000 0.0000 steady 
ur 0.0013 0.07959 non-stationary 
Δur 0.0000 0.0000 steady 
struc 0.0000 0.0162 steady 
Δstruc 0.0000 0.0000 steady 
KAO-MDF 
KAO-DF 
KAO-ADF 

0.0000 
0.0000 
0.0000 

Correlation exists 
Correlation exists 
Correlation exists 

 
Intriguingly, As shown in Table 2, our inquiry into co-

integration, as gauged by the outcomes of the KAO-MDF, 
KAO-DF, and KAO-ADF tests, has yielded noteworthy 
results. It is with a degree of statistical significance, set at 
the conventional 5% threshold, that we decisively reject 
the null hypothesis, thus affirming the presence of a co-
integration nexus interlinking these variables. 

4.3 Panel estimation results 

Table 3. panel estimation results 
 fixed effect 

(fe) 
stochastic 
effect (re) 

System gmm 
two-step 

 lnc lnc lnc 
l.lnc   0.9991*** 
   (49.5319) 
lq 0.4757*** 0.7020*** 0.1732** 
 (4.8164) (6.7845) (2.4693) 
lq2 -0.0557** -0.1105*** -0.0461** 
 (-2.1534) (-4.0333) (-2.3743) 
lninc 0.8334*** 0.3311*** -0.0768 
 (7.9792) (5.8090) (-0.9415) 
lnma 0.1620*** 0.2021*** 0.0281 
 (4.7575) (5.7755) (1.5167) 
il 1.1810*** 1.6651*** -0.0895 
 (7.0438) (10.1173) (-0.5184) 
ais 1.0037*** 0.7712*** -0.4340** 
 (3.8908) (2.9600) (-2.2491) 
pis -0.2892*** -0.4307*** -0.0261 
 (-5.0865) (-7.2249) (-0.5670) 
ur 0.3013 0.1159 0.5364* 
 (1.3606) (0.5517) (1.8865) 
struc 0.1173 0.1516 0.0724 
 (0.4857) (0.6451) (0.3006) 
_cons -2.6952*** 1.0252** 0.4792 
 (-3.2953) (1.9771) (0.5990) 
N 600 600 570 
R2 0.755 0.734  
AR(1)[P]   -3.53[0.000] 
AR(2)[P]   -1.45[0.147] 
Hasen[p]   18.25[0.148] 
symmetry 
axis 

  2.1730 

 
In accordance with the findings in Table 3, with the 
inclusion of a lagged term in the dependent variable within 
our empirical model, a crucial transformation unfolds. It 
imparts a nuanced complexion to our modeling, rendering 
the residuals no longer strictly exogenous and 
homoscedastic in nature. In such circumstances, the 
instrumental variable method emerges as the more fitting 

and judicious approach to estimation. Simultaneously, 
recognizing the potential interplay between agricultural 
carbon emission intensity, our core explanatory variables, 
and the regional level of economic development, we have 
opted to employ the Systematic Generalized Method of 
Moments (GMM) to skillfully navigate the endogeneity 
lurking within our equation. 

4.4 Five-point sample estimation results 

This division neatly segregates them into two distinctive 
echelons: the echelon of heightened Agricultural Industrial 
Concentration (aq ≥ 1.194) and the echelon marked by 
diminished Agricultural Industrial Concentration (aq < 
1.194). Within the lofty stratum of agricultural industrial 
concentration, a cadre of nine cities emerges, collectively 
constituting a compendium of 176 meticulously observed 
instances.  
 

Table 4. Results of the sample systematic GMM test 

Variables 
High cluster group Low cluster group 
(1) (2) 
lnc lnc 

L.lnc 0.8550*** 0.9705*** 
 (8.8504) (33.3249) 
lq 0.0433 0.2768** 
 (0.4061) (2.9125) 
lq2 -0.0035 -0.0809*** 
 (-0.1799) (-2.9806) 
struc 0.2385 -0.2329 
 (1.1494) (-1.2629) 
ur -0.4132 0.5104 
 (-0.9053) (1.6499) 
lninc 0.2042 -0.0819 
 (1.1848) (-0.9436) 
lnma 0.0542 0.0152 
 (0.8984) (0.8590) 
il 0.3721 0.0483 
 (0.9227) (0.2776) 
ais 0.4134 -0.5536*** 
 (1.3165) (-3.3001) 
pis 0.1951 -0.0716*** 
 (1.2615) (-2.9679) 
N 247 304 
AR(1)[P] 
AR(2)[P] 

-2.45[0.014] 
-0.65[0.513] 

-2.63[0.009] 
-1.53[0.125] 

Hansen[P] 27.37[0.159] 20.22[0.164] 
 
Table 4 displays the statistical distribution of survey 

responses.Through the application of systematic 
generalized method of moments (SYS-GMM) testing on 
our samples, we discern a dichotomy within the realm of 
agricultural industry agglomeration. In one echelon, we 
observe a salient positivity, while in the secondary echelon, 
a discernible negativism manifests. However, it is crucial 
to underscore that this relationship acquires its 
significance solely within the sphere of low concentration. 
This observation vividly illuminates the nuanced interplay 
between agricultural industry agglomeration and 
agricultural carbon emissions, characterized by a 
heterogeneous, inverted U-shaped curve.  
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5 Discussion and Implication 
From a Sichuan Province vantage point, a conspicuous 
"inverted U-shaped relationship" manifests between 
agricultural industrial agglomeration and agricultural 
carbon emissions, thus validating Hypothesis 1. This 
empirical validation underscores the imperative of a 
nuanced grasp of agricultural industrial agglomeration's 
role in shaping agricultural carbon emissions. It further 
accentuates the necessity for region-specific, timely policy 
formulations. 

Temporal entwinements exert a profound influence on 
agricultural carbon emission intensity. The echoes of 
heightened agricultural carbon emission intensity in the 
antecedent period resonate through time, casting a shadow 
upon subsequent periods, thereby corroborating 
Hypothesis 2. This underscores the exigency for temporal 
considerations in addressing carbon fixation and reduction 
within Sichuan Province's agricultural sector. 
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