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Abstract—This study presents an in-depth analysis of the energy-saving bias in green technology
innovation across 30 provinces in manufacturing from 2011 to 2021, utilizing a novel
Malmquist-Luenberger multidimensional decomposition index based on the directional distance function.
The research reveals that green innovation, characterized predominantly by energy conservation, plays a
pivotal role in driving China's green total factor productivity. The impetus for innovation in energy saving is
found to surpass that of emission reduction in manufacturing enterprises. Energy-saving biased green
technology innovation, originating in economically advanced provinces, has gradually expanded to the
northern region, and it encompassed the majority of provinces in China. This type of innovation serves as
the primary driver of regional green innovation. The study also identifies a conspicuous spatial aggregation
effect of energy-saving biased green technology innovation, linked intrinsically to the degree of industrial
aggregation and the spatial correlation effect of innovation.

1. Introduction
As one of the world's largest manufacturing hubs, China
is at the forefront of energy-efficiency innovation
challenges. The manufacturing industry, while being a
significant contributor to China's GDP and employment,
is also a major consumer of energy, accounting for nearly
70% of the country's total energy use [1].
Innovation-driven green industrial manufacturing is
proliferating [2]. However, the choice of direction for
green technology innovation is not clear, resulting in the
inability to assess energy-efficient green innovation on a
regional macro level. To address this issue, this paper
proposes a nonparametric model to measure the energy
efficiency bias of industrial manufacturing and its spatial
evolution characteristics. The parametric method, which
enhances the production function by deriving a
comprehensive total factor productivity function [3],
allows researchers to unravel the driving forces behind
changes in total factor productivity. Non-parametric
methods, on the other hand, focus on analyzing the factor
bias of technological progress by examining the
non-isometric movement of the production frontier across
different time periods. This movement induces changes in
the marginal output ratio of various factors, providing
insights into how technological innovation tend to favor
specific input factors such as capital, labor, or energy
[4]–[6]. In contrast, the parametric approach has more
stringent modeling assumptions and some difficulties in
dealing with non-expected outputs [7]. In the context of

green technology innovation, it is crucial to account for
unexpected outputs and incorporate negative
environmental outcomes into the analytical framework [8].
This approach enables a comprehensive analysis of the
biased allocation of factors at the input stage, which is of
significant importance for exploring energy-saving biases
in green innovation. Due to the certain spatial association
characteristics of green development [9], [10], a clear
understanding of spatial evolution characteristics of green
biased innovation in manufacturing will help
policy-making departments to suit the remedy to the case.

This study draws on manufacturing data from 30
provinces in China, excluding Hong Kong, Macao,
Taiwan, and Tibet over the period from 2010 to 2021. By
calculating the degree of green technology innovation bias,
decomposing the substitution effects of input factors, and
obtaining the results of energy-saving bias for green
innovation of each province and year, this study aims to
analyze the spatial evolution characteristics of these
biases.

2. Method and Model
We draw on Färe and chung's study [11], [12]by
imposing a weak disposability constraint on non-desired
outputs and combine it with the Malmquist-Luenberger
productivity index methodology in order to compute the
green technology innovation bias as follows:
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Where xt denotes the set of input factors, yt

denotes the set of expected output factors, and the set of
unexpected output factors as bt . The ML index can be
decomposed into efficiency change ( ΔT ) and
technological change (ΔTE)，as in equation (1). Further,
the ΔTE index is decomposed to obtain the input bias of
green technological innovation (GII) and the output bias
of green technological innovation (GIO), as in equation
(2) and (3).

In this paper, we further decompose GII so as to
construct the substitution relationship between input
factors in order to calculate the substitution index of
green technology for energy, i.e., the energy-saving
biased green technology innovation index (EBGI), as in
equation (4).
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�+1

+1/�



− 1 × (�� − 1) (4)

where � gauges the green technology innovation,
represented by number of green patents;  refers to
energy input, represented by comprehensive energy
consumption per unit of industrial added value; �+1

+1/�



is

the ratio of the marginal substitution rates of factors �
and  from stage  to  + 1 . ���, > 0, it indicates
that � realizes the bias of green technology innovation by
substituting  , which is the energy-saving green
technology innovation of factor .

3. Data and Varialbes
The data are mainly from China Statistical Yearbook
(2011-2022), China Industrial Statistical Yearbook
(2011-2022), and China Environmental Statistical
Yearbook (2011-2022). The variables are designed in
table 1 as follows:

Table 1. Variable description

Types
Variable

variable
name indicators Sign

Input

Energy
Comprehensive energy
consumption per unit of
industrial added value

+

Technology
Number of invention patents of
industrial enterprises above
designated size

+

Labor Manufacturing employment +

Output Non-expected
outputs

COD emissions per unit of
industrial added value -

Ammonia nitrogen emissions
per unit of industrial added
value

-

Types
Variable

variable
name indicators Sign

SO2 emission per unit of
industrial added value -

Nitrogen oxides per unit of
industrial added value -

Solid Waste Generation per
unit of industrial added value -

Wastewater emissions per unit
of industrial added value -

Expected
outputs

Industrial value added as % of
GDP +

4. Results

4.1. GII and GIO index

As depicted in Fig 1, it is evident that the influence of
input bias on green technology innovation was more
pronounced prior to 2014. Post-2014, however, the
scenario changed significantly, with the output bias of
green technology innovation emerging as a key driver of
green total factor productivity. Furthermore, an
examination of the factor substitution bias at the input end
reveals that the Green Technology Innovation Index (GII)
has been greater than 1 in the majority of years,
suggesting that green technology in the manufacturing
sector has had a positive impact on the substitution of
intergroup bias of energy and labor input factor groups.

Figure 1. Heatmaps of GII and GIO

On a regional scale, there are marked differences in
green technology innovation across various provinces in
China. Specifically, between the years 2016 and 2020, the
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scenario changed significantly, with the output bias of
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has been greater than 1 in the majority of years,
suggesting that green technology in the manufacturing
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intergroup bias of energy and labor input factor groups.

Figure 1. Heatmaps of GII and GIO

On a regional scale, there are marked differences in
green technology innovation across various provinces in
China. Specifically, between the years 2016 and 2020, the

Green Innovation Index Outputs (GIOs) for most regions
were found to be higher than 1.15. This trend aligns with
the contemporary concept of low-carbon development. In
2021, the GIOs of provinces such as Anhui, Hebei,
Heilongjiang, Hunan, Liaoning, and Shanghai exceeded
1.2. This suggests that innovations aimed at reducing
emissions, propelled by environmental regulations, have
been driving the adoption of green technologies in these
regions. Concurrently, the 2021 data also shows that in
provinces like Annex, Hainan, Inner Mongolia, Jiangxi,
Qinghai, and Shaanxi, the GII was higher than 1.05. This
indicates that under the constraints of resources and
environment, input bias has been a significant factor
driving green technology innovation in these regions.

4.2. EBGI index

Figure 2 illustrates the intra-group bias of the input factors
associated with green technology innovation within the
manufacturing sector across 30 provinces in China,
spanning from 2011 to 2021. The data reveals that both
prior to 2014 and post-2018, green technology innovation
displays a clear inclination towards energy conservation.
More specifically, when examining the bias in technology
innovation between the two factors of "technology" and
"energy", where the Energy Bias Green Innovation (EBGI)
is greater than zero, it becomes evident that the overall
generation of green innovation is characterized by energy
efficiency. This suggests that, for manufacturing
enterprises, the impetus for innovation in energy
conservation surpasses that of emission reduction.

Figure 2. Heatmaps of EBGI

Upon further analysis of the spatial distribution of the
energy-saving bias in green innovation, data from the
most recent three years (2019, 2020, and 2021) reveal that
regions such as Guizhou, Hainan, Inner Mongolia, and
Shaanxi exhibit pronounced energy-saving bias
characteristics. This is a departure from the traits observed
in areas with higher levels of economic development in
previous years. These regions have transitioned from an
energy-driven technological innovation model to a model
where technology drives energy-saving green
technological innovation. This shift not only indicates that
the technology gap is being bridged but also suggests that
green technology innovation is beginning to demonstrate
regional spillover effects.

4.3. Characteristics of spatial evolution

Figure 3 provides a visual representation of the spatial
patterns of the Green Innovation Index (GII) at the
provincial level, illustrating the bias levels for the years
2015, 2018, and 2021.

As depicted in Figure 3, the geographical distribution
of Green Innovation (GI) across China is characterized by
a steady expansion. The pattern of GII underwent a
smooth transition throughout the study period, marked by
a continuous distribution. Notably, the bias in green
technology innovation in the southern regions is gradually
shifting towards the input side, indicating a growing
emphasis on resource allocation. Concurrently, the central
region is witnessing a gradual intensification of input bias,
underscoring a similar trend.

Figure 3. Spatial pattern of GII. (2015,2018,2021)

Figure 4 presents the spatial patterns of the Green
Innovation Outputs (GIO) at provincial scales, visualizing
the bias level for the years 2015, 2018, and 2021.

Figure 4. Spatial pattern of GIO. (2015,2018,2021)

As depicted in Figure 4, in contrast to the
characteristics of input bias, the output bias of green
innovation within the Chinese manufacturing industry is
showing a trend of gradual attenuation. Concurrently, an
examination of the bias characteristics reveals distinct
regional traits of green technology innovation bias within
the manufacturing industry. The eastern region
predominantly exhibits environment-friendly
technological innovation, while other regions are
characterized by a focus on resource-saving technological
innovation.
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Figure 5. Spatial pattern of EBGI. (2015,2018,2021)
Figure 5 primarily investigates the regional spatial

evolution characteristics of the bias towards
energy-saving green technology innovation.

As depicted in Figure 5, energy-saving biased green
technology innovation emerges as the principal driver of
regional green innovation. The spatial characteristics of
energy-saving biased green technology innovation are as
follows:

(1) In 2015, prior to the introduction of the "green
manufacturing" concept, energy-saving biased technology
innovation was predominantly concentrated in
economically developed provinces, including the eastern
coastal region, Beijing, Tianjin, and other areas. This
focus gradually shifted towards the northern region, and
by 2021, it encompassed the majority of provinces in
China.

(2) The spatial aggregation effect of energy-saving
biased green technology innovation is pronounced, which
correlates with the degree of industrial aggregation and
the spatial correlation effect of innovation.

(3) In comparison to labor substitutability,
advancements in technology and the reduced costs of
green technologies have made them more accessible and
feasible for adoption within the manufacturing industries.

5. Conclusions
Leveraging the directional distance function, we have
constructed a novel Malmquist-Luenberger
multidimensional decomposition index. This tool has been
used to scrutinize the energy-saving bias of the input
factors of green technological innovation across 30
provinces in China, with a particular focus on its spatial
and temporal evolution characteristics. Our
comprehensive evaluation explores the pivotal role of
green technology innovation in propelling green total
factor productivity of manufacturing in China from 2011
to 2021. The findings underscore that green innovation is
predominantly characterized by energy conservation,
suggesting that for manufacturing enterprises, the impetus
for innovation in energy saving surpasses that of emission
reduction.

In conclusion, our research illuminates the critical role
of energy-saving bias in green technology innovation. The
spatial evolution characteristics of this bias indicate a
steady expansion of green technology innovation, with an
increasingly pronounced input bias in the central region
over time. We have also observed that energy-saving
biased green technology innovation serves as the primary
driver of regional green innovation. This type of
innovation, which originated in economically advanced
provinces, has gradually expanded to the northern region,
and by 2021, it encompassed the majority of provinces in
China.

The conspicuous spatial aggregation effect of
energy-saving biased green technology innovation is
intrinsically linked to the degree of industrial aggregation
and the spatial correlation effect of innovation. The
regional disparities identified in our study underscore the
need for a deeper understanding of the factors

contributing to these differences. This understanding
could further inform the design and implementation of
regional green technology policies.
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