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Abstract. In this work, we study the approach connected with branching 
Markov processes. Branching Markov random processes are created to solve 
boundary-value problems (BVR) with polynomial nonlinearities. The 
realization of these processes creates so called “trees”. Unbiased estimators 
of the solution of the nonlinear problem are constructed on these random 
trees. We also calculated in parallel way the variance (statistical error) of the 
constructed unbiased estimators. We offer computational algorithms for 
solving some nonlinear diffusion problems which frequently appears in 
engineering problems, particularly in heat conductivity.  The case of a 
quadratic nonlinearity for the boundary BVP is considered in detail. 
Algorithms, for diffusion BVPs with nonlinear boundary conditions, differ 
from proposed for linear diffusion BVPs algorithms early and we compare 
their efficiencies. The described algorithms applied to the computational 
problem of thermal engineering in the presence of a nonlinear boundary 
condition. Also, this problem is solved as a boundary value problem of 
conductive heat transfer.  

1  Introduction 

The application of Monte Carlo methods in various fields is constantly growing due to 
increases in computer capabilities. Increasing speed and memory, and the wide availability 
of multiprocessor computers, allows us to solve many problems using the “method of 
statistical sampling”, better known as the Monte Carlo method. 

Monte Carlo methods are known to have particular strengths. These include: 
1. Algorithmic simplicity with a strong analogy to the underlying physical processes. 
2. The ability to solve complex realistic problems that include sophisticated geometry 

and many physical processes. 
3. The ability to solve problems set in very high dimensions. 
4. The ability to obtain point solutions or a linear functional of the solution. 
5. Error estimates can be empirically obtained for all types of problems. 
6. Ease of efficient parallel implementation. 
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In the current time three approaches are connected with solving nonlinear problems of 
engineering using method of Monte Carlo. The first approach implies the linearization of the 
problem (sequential solution of the series of linear problems). The second approach is 
connected with branching Markov processes. The third one is connected with optimal random 
search.  

In this work, we study the approach connected with branching Markov processes. 
Branching Markov random processes are created to solve boundary-value problems (BVR) 
with polynomial nonlinearities. The realization of these processes creates so called “trees”. 
Unbiased estimators of the solution of the nonlinear problem are constructed on these random 
trees. We also calculated the variance (statistical error) of the constructed unbiased 
estimators. 

We offer computational algorithms for solving some nonlinear diffusion problems which 
frequently appears in engineering.  The case of a quadratic nonlinearity for the boundary 
BVP is considered in detail. 

The solution of practical problem of mathematical physics, often in boundary conditions 
arise, which have polynomial nonlinearities. Let's consider one a problem (heat conductivity) 
of the following type  

,
𝑎𝛥𝑢 𝑥, 𝑡 𝑎𝑓 𝑥, 𝑡 /𝜆,  𝑥 ⊂ 𝑅 ,                            (1) 

where the temperature 𝑢 𝑥, 𝑡   is unknown, t is time, 𝛥 is the Laplace operator, 𝑓 𝑥, 𝑡   is a 
known function, 𝑎, 𝜆 are temperature conductivity and heat conduction coefficients with 
boundary conditions 

𝜆
,

𝐵 𝑢 𝑥 , 𝑡 𝑢 ,                                       (2) 

where 𝑥  is a point on the boundary of our domain, 𝑢 𝑐𝑜𝑛𝑠𝑡  is a given temperature of 
the environment, 𝑛  is a direction of inner normal and initial conditions 

𝑢 𝑥, 0 𝑢 𝑥 ,                                                     (3) 
where 𝑢 𝑥   is a known initial temperature.    

The domain for this problem is bounded by two coaxial cylindrical surfaces with external 
and internal radiuses 𝑅 , 𝑅  and length L. We denote this domain as D, and its boundary as 
G. We also assume that the material under consideration is isotropic relatively to heat transfer 
characteristics, and these characteristics do not depend on the temperature. 

2 Methods 

Boundary value problems with nonlinearities of this type cannot usually be solved 
analytically. That is way numerical approaches are used. A particularly, effective method for 
this problem is Monte Carlo method. Its application does not put limits on the configuration 
of the boundary   allows one to calculate local values of the unknown function. 

Let's consider using one of the above algorithms of solving the boundary value problem 
(1)-(3) by the Monte Carlo method. In a book [1] fundamental ideas for solving boundary 
value problems with nonlinear boundary conditions with the Monte Carlo method are 
connected to branching Markov processes. In addition, the algorithm of solving the grid 
analogue of the boundary problem (1)-(3) was given. Below we use the method of solving 
this problem by "walk on spheres", which is considered in detail in papers [2]. Random walk 
methods for Monte Carlo simulations of Brownian diffusion on sphere considered by many 
authors, for example [see.3]. Further development of this methods made by authors [4,5].  
Nowadays, the efficiency of stochastic algorithms for solving the Dirichlet problem for the 
heat equation and algorithm walk on boundary method investigated by the authors [6,7,8]. 
For construction our algorithm we will transform the expression (2) into 
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,
𝑐𝑢 𝑥 , 𝑡 𝐴,                                         (4) 

where 𝑐 𝐵/𝜆 and 𝐴 𝐵𝑢 /𝜆 for  𝑢 𝑥 , 𝑡   we obtain   
𝑢 𝑥 , 𝑡 𝑝 𝑢 𝑥 , 𝑡 𝑝 𝑢 𝑥 , 𝑡 𝑝 𝐴,                                (5) 

where 𝑝 𝑐𝑙/𝑠, 𝑝 1/𝑠, 𝑝 𝑙/𝑠,  𝑠 1 𝑙 𝑐𝑙, 𝑝 𝑝 𝑝 1.   
A random proses describes in a random walk of particle, which starts its random walk at 

𝑥 , 0 , it moves to ( 1x , 𝑡 , which is uniformly distributed on the sphere of maximal radius 

𝑟  in the domain D. Then a new sphere will be constructed with center at 𝑥 . This process 
(which called “random walk on spheres”) continues until we reach to the boundary 𝐺 , the 𝜀 
- neighborhood of the boundary G. 

2.1 Construction of stochastic algorithm 

At every move of the particle to the next sphere, its weight increases by 𝑓 𝑥 , 𝑡 𝑟 /𝑐,  where 
𝑖 is step index. Also, equation (5) can be interpreted in the following way. When the particle 
reaches  𝐺   at 𝑥  with probability 𝑝 , the particle gives birth to two new equivalent particles 
and with probability  𝑝  one new particle. Also, with probability𝑝 , the random walk is 
absorbed and the weight becomes 𝐴. The particle continues its random walk analogous to the 
origin.  

For each transition from point ( 𝑥  , 𝑡 ) to point (𝑥 , 𝑡 ) the random time step 𝜏 is 
sampled according to densities as described in the work [2]. The time is expressed in the form 
of 𝑡 𝑡 𝜏 , where 𝑡 0, and 𝑖 1,2, …. The random walk process is terminated when 
either it is absorbed on the boundary, or the following condition holds  

 ∑ 𝑡 𝑇 .                                                       (6) 
In the last case, the particle gets a weight, equal to initial condition 𝑢 𝑥 .  
When the initial particle gives birth at the k-th step, the current value of 𝑡 is given to each 

of the new particles and we store these time values. After the next particle is absorbed, other 
particles (indexed by coordinates 𝑥  and time 𝑡 ), which have been saved earlier, are taken 
from memory for continuing processing. The process stopped when the branching Markov 
process is completely finished. 

2.2 Numerical results 

The validate of the method, we applied it to problem (1)-(3) with the following data:  
𝐿 0.6𝑚;  𝑅 0.015𝑚;  𝑅 0.013𝑚;   𝜆 1.34𝑊𝑡/ 𝑚 𝑑𝑒𝑔𝑟𝑒𝑒 ; 

𝑎 0.68 ∗ 10 𝑚 /𝑠;   𝑉 80𝑊𝑡/𝑚 𝑑𝑒𝑔𝑟𝑒𝑒 ;  𝑢 20 𝐶; 
𝑢 100 𝐶;   𝑓 𝑥, 𝑡 0.26 ∗ 10 𝑊𝑡/𝑚 ;  𝑇 10. 

A point estimator of the temperature was used at locating equidistant from the cylindrical 
surfaces and moving along the cylindrical axis. The origin of coordinates is the base of the 
cylinder. Results of the computation with a 97% confidence interval for a various value of 
𝑍, 𝜀and l, using 10000 experiments in each series are given below: 

Table 1. Numerical results of solution the problem (1)-(2)-(3). 

Z, m l, 10-2m , 10-3m 𝒖 𝒙, 𝒕 , 𝑪∘  𝟑𝝈, 𝑪∘  

0.57 0.1 0.3 86.71 2.15 
0.57 0.1 0.1 89.34 2.77 
0.3 0.06 0.1 87.14 2.14 
0.3 0.1 0.3 86.32 2.93 
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Here 𝝈 is standard deviation. The time dynamics the temperature of the point (0.0285m, 
0.015 m, 0.3 m) is given in Table 2.  

Table 2. Dynamics of changing of temperature at the point (0.0285, 0.015, 0.3). 

t 𝒖 𝒙, 𝒕 , 𝑪∘  𝟑𝝈, 𝑪∘  

5 17.26 3.21 
10 53.61 9.86 
15 75.34 12.72 
20 86.93 17.12 

 
The CPU time for calculating the temperature was about 45 sec. on our PC.  

3 Conclusion 

The work used the probabilistic representation of the solutions of boundary-value problems 
with discrete (grid) approximations the original stochastic process. The processes are easy 
for computing, don’t require large amounts of memory of computer, but at the same time are 
comparatively complex because of the need to simulate “long” random trajectories. 

It is known, for solving nonlinear boundary problems by simulating branching processes, 
there are currently two practical Monte Carlo schemes which are thoroughly developed.  

The first is random walks on the grids with branching and the second is random walks on 
spheres with branching. When we using the random walks on the grid with branching or 
random walks on spheres with branching, we note that when solving problem at an isolated 
point, we do not have to determine the solution at all the points on the grid.  

This is one of fundamental advantages of using the Monte Carlo method to solve 
nonlinear boundary value problems.    Sometimes in constructing algorithms mostly used 
mean value theorems for parabolic equations and applied the analogy of algorithms like 
"random walk on spheres" and "random walk on spheroids" with branching. Obtained results 
can be used for further studying and constructing Monte Carlo algorithms for the solution 
more general diffusion BVP with polynomial nonlinearities. In future we want to apply these 
results for the solution to the most complicated practical engineering problems. 
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