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Abstract. Tests of ballistic aircraft on rail tracks in conditions close to 
real ones are an economically viable alternative to flight tests. Rocket rail 
tracks exist in the USA, Canada, France, China and a number of other 
countries. The article con-siders potentially self-oscillating mechanical 
systems that have a threshold mechanism for the transition from a noise 
vibrational stable state to a self-oscillatory one, depending on the mode 
parameters. An algorithm for estimating the damping coefficient of the 
harmonic components of a particular mode of a complex process is 
proposed. As an indicator of energy loss of the oscillatory component 
during resonant interaction, the value of the density of the power spectrum 
related to the width of the frequency range is taken. Based on the solution 
of the Fokker-Planck equation for a stochastic process, estimates of the 
"drift" and "diffusion" coefficients are obtained. A technique for estimating 
the state of potentially self-oscillatory systems in the form of a set of 
probabilistic stochastic characteristics is proposed. According to the 
experimental data of vibration accelerations for the structural elements of 
the rocket sled with the test object, according to the proposed method, it is 
possible to make the contribution of the self-oscillations of the elements, if 
they are pre-sent in a complex vibration process, and also to make 
estimates of their vibration strength at resonances.  

1 Introduction 

The rail track is an experimental installation with a two-rail and (or) monorail track of 
various lengths, for example, in the USA, the track is more than 12 km long. The existing 
track in the FKP "GkNIPAS" named after L.K. Safronov has a vertical profile, consisting of 
three sections: an accelerating section with an angle of attack, a straight section, and a 
descent section designed to slow down a moving sled with the equipment under test. The 
total length of the track is 3500 m. The movable rail sled is an all-welded rigid frame with 
three transverse beams. The rear and front beams are pivotally connected to the sliding 
supports (shoes) and lodgements for fastening rocket engines of solid fuel, based on the rear 
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and middle beams. The test object is a cylindrical body with a conical nose fairing. It is 
attached to the middle and front beams. Three-axis vibration acceleration sensors have 
recently been placed on rocket sledges and test objects, and signal recorders have been 
placed on the upper base of the carriage. Fire launches are carried out regularly, however, 
since the vibration sensors were installed, it has been noted that under the same acceleration 
modes, in some cases, shock disturbances on the shoes are realized without a response from 
the elements of the rocket carriage, and in other cases, resonances with large amplitudes are 
observed, both on the sliding supports and at some points of the carriage. The shoes, when 
installed on rails, have side gaps. Such shock disturbances on sliding supports lead to 
dynamic instability of the rocket sleigh and to bending vibrations of the protruding 
cantilever part of the test object, to limit vibration loading of the electronic equipment of 
the test object. In order to ensure the directional stability of the movement, the problem of 
the stochastic transition of the vibroacoustic mode of a potentially nonlinear system into a 
self-oscillating one is considered [1-2].  

2 Rocket sled dynamics  

Any systems that have mass and elasticity, loaded with body forces and moments, are 
dynamic oscillatory systems with an infinitely large number of degrees of freedom. To 
analyse the elastic oscillations of such systems, we use the d'Alembert method, in which 
equivalent inertia forces are used instead of body forces in differential equations that 
describe the equilibrium of systems. In this case, the solutions of these equations are 
presented as a product of coordinate functions and time functions that change according to 
a harmonic law. Solutions in the form of functions of coordinates with zero right-hand sides 
and homogeneous boundary conditions are modes of free vibrations, and solutions in the 
form of a function of time describe motion as principal coordinates. 

When analysing the vibration loading of products placed on track sleds during ground 
testing, approximations are used in which the real system is replaced by a conditional 
system with lumped parameters with equivalent mass and elasticity. Since the components 
of the sled in the theoretical analysis are represented by beams of various profiles, and the 
vibrations of the structural elements are directed along the three axes X, Y and Z, then the 
complex vibration field can be represented in a simplified, generalized way, without mode 
indices and without the direction of the acting vibrations. In what follows, we will 
introduce notation, if necessary. 

In distributed systems, the parameters that change over time and natural oscillations turn 
out to be related to each other, as a result of which parametric excitation of several 
harmonic oscillations synchronized with each other is possible. In the case of proximity or 
coincidence of the spectra of a stationary system with an equidistant velocity spectrum, 
then a periodic change in time of its parameters can lead to excitation of oscillations of a 
pulsed form [3-8]. 

The stochastic state of a dynamical system is described by differential equations of 
order higher than the second. The threshold transition from an unorganized stochastic state 
of an open system to a self-oscillating one for various modal configurations of structural 
elements can be described by a second-order dissipative dynamic system excited by a 
random broadband vibration [1-9]: 
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(one equation (1) for each mode of normal vibrations of a rigid body). 
Here: t – time; 
uj is the time realization of the narrow-band random process; 
ω0j is the circular frequency of natural oscillations for each mode of normal oscillations 
(without damping); 
  kδjd, kδjg are, respectively, the coefficients of dissipation and generation of energy of the 
jth mode vibrational configurations, which are functions of the parameters (Пj, yj) of the 
sleigh movement mode; 
ζ (t) – stationary normal random broadband action. 

Within the framework of the dynamic model (1), the decrement of small oscillations dj 
= kδj Tj in the vicinity of the resonant frequency fj = 1/ Tj is a diagnostic indicator of the 
linear stability margin: 
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where Tj is the oscillation period; Ed is the energy dissipated by the oscillatory system 
during the oscillation period; Еg is the energy generated by the oscillatory system during the 
oscillation period; Es is the energy stored by the system during the oscillation period. 

From the point of view of diagnosing the mode of harmonic oscillations, it is important 
that if there is a random source ζ(t) on the right side of equation (1), simulating a broadband 
quasi-harmonic effect, the model parameters, namely: natural circular frequency ω0j and 
damping coefficient kδj can be determined from the observed realizations ξj (t). In 
particular, with a linear signal formation mechanism in the vicinity of the resonant 
frequency of the jth mode of normal oscillations, the peak width Df of the power spectral 
density S(f) of the signal ζ (t) at the level of 0.5Smax is proportional to the decrement d of 
the j th mode. 
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where Tj is the oscillation period of the j th mode. 
On fig. 1 shows a graphical illustration of the estimation of the damping decrement of 
quasi-harmonic oscillations 
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Fig. 1. Graph of the algorithm for estimating the oscillation damping decrement. 

Markov processes are determined by the initial distribution and the transition probability 
equal to the conditional probability density of the transition from the previous state to the 
next one (process without aftereffect) for any instants of time [2, 9-13]. Using the 
conditions for the smallness of the change in amplitude and phase over the oscillation 
period and applying the well-known averaging method for one variable uj, from formula (1) 
we can obtain the following evolution equation describing the dynamics of the jth normal 
mode of a potentially self-oscillating system 
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where: yj(t) is the envelope of the oscillation amplitude of the jth mode, 
δkj (yj) is the coefficient of dissipation-generation of vibrational energy, is a function of the 
oscillation amplitude yj of a specific j-th mode, 
ω0j is the natural (resonant) circular frequency of the j-th mode, 
Sn0 is the spectral intensity of random noise exposure in the vicinity of the resonant 
frequency ω0j; 
∆(t) is a normal random delta - correlated function with zero mean. 
In order to simplify the notation, we will further omit the index j, which shows that the 
model parameters belong to the jth mode of normal vibrations of the object under 
consideration, due to the fact that we use the single-mode approximation. Let us turn to 
model (1) with a random term ζ = ∆ζ(t) on the right side. Taking into account that ζ(t) is 
white noise, and y(t) is a slowly varying function compared to the period of oscillations, the 
evolution equation (4) describes a one-dimensional Markov random process with “drift” 
coefficients D1, further we denote 
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and "diffusion" D2 we denote (D1,D2 ... Dk k =1,2, … - means the superscript. Introduced in 
[9-12] for a one-dimensional process.) 
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The stochastic differential equation (4) can be put in correspondence with the Fokker - 
Planck - Kolmogorov equation for the stationary probability density of the amplitude Pст(y) 
[9-14] 
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where G is the probability flux through the boundaries of the vibrational hysteresis). 

The solution to equation (7) is the dependence 
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In the particular case of the linear model δk = δk(y) = const, distribution (9) leads to the 
experimentally observed Rayleigh distribution of the oscillation amplitude y 
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Nonlinear diagnostic model (7) has the property of identifiability of its parameters, in 
particular, the functional dependence of the damping coefficient on the oscillation 
amplitude. The dependence δk = δk (y) can be estimated based on the expression obtained 
from (11) 
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Dependence (11) makes it possible to estimate δk = δk(y) from the function  ( )стP y , 

determined from the experiment [1-2]. 
The results of the experiment and calculations are presented in the form of graphs in 
Figures 2 and 4. 
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Fig. 2. The signal of the vibration overload sensor along the Z axis, perceived by the sliding support 
at a speed of 360 m / s of the rocket sled. On the y-axis, the dimension of the overload is in g. 

Identical in form and synchronous signals along all three axes, but the magnitudes of shock 
disturbances are different. The maximum values of the amplitude of vibration overloads are 
realized in the horizontal plane along the Z axis, directed perpendicular to the movement. 
On fig. 3 shows the dependence of the density of the power spectrum of vibration overloads 
along the Z axis on the frequency 

 

Fig. 3. The distribution of the density of the spectrum by frequency. Z-axis encoder signal. 

It follows from the graph that significant energy of vibration overloads is localized in the 
low frequency range from 5 Hz to 25 Hz. On fig. 4 shows graphs of mutual correlation 
functions of vibration overload signals along the X and Y, X and Z axes. 

 

 

Fig. 4. Mutual correlation functions (CF). 

a - Sensor No. 1 signals (right support) along the X and Y axes. 

b - Signals of sensor No. 1 (right support) along the X and Z axes. 
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The graphs indicate that in a complex vibrational process there are harmonic components 
with a very low attenuation coefficient. On different axes, the harmonic components have a 
slight phase shift and a slightly different decay rate. Synchronized harmonic components of 
a complex vibrational processes directed along the X, Y and Z axes at a frequency close to 
its own, for the right front sliding supports bearing, lead to a threshold transition to the self-
oscillating mode and initiation of pulsed oscillations, while the damping coefficient of 
oscillations of this system is close to zero [4-8;15-16]. 
 

3 Conclusion 

The presented algorithm for estimating the damping coefficients of the harmonic 
components of vibration overloads that arose as a result of an induced threshold transition 
to a broadband shock disturbance. Due to the accelerated acceleration of the track sleigh, 
the control parameters of the limit cycle of self-oscillations change and further relaxation of 
the dynamic system is realized in the form of forced oscillations of the carriage elements. 
The analysis of complex signals makes it possible to estimate the probability of excitation 
of impact actions on sliding supports bearings due to a stochastic nature. Considering that 
the coherence of signals along the X, Y, Z axes is equal to one, then the impulses perceived 
by the sliding support in the vertical direction led to broadband perturbations along the Z 
axis in the transverse direction and affect the trajectory stability of the sleigh. Signs that the 
system under study belongs to potentially self-oscillatory ones with a threshold mode of 
self-excitation are: the damped form of the autocorrelation or mutual correlation functions, 
the close-to-Gaussian distribution density of the probability of instantaneous signal values, 
and the final dependence of the self-oscillation damping coefficient (decrement), which 
necessarily decreases with increasing amplitude. Prediction of the probable threshold of 
excitation of the unstable limiting cycle of self-oscillations is carried out by analytical 
continuation of the smoothed dependence to zero value of the damping coefficient. The 
ultimate goal of the research is the selection of optimal control parameters for the 
implementation of vibration protection measures under random stochastic effects. 
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