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Abstract. The paper proposes the data-based method for reaching and 
maintaining the nominal aircraft flight dynamics in in case of actuator 
failures. The method is based on aircraft control reconfiguration and uses 
input and output data of flight control system only. The novelty of the 
proposed method lies in the reachability of nominal dynamics not in one, 
but in several discrete steps from the moment the reconfiguration starts. 
This makes it possible to ensure the reachability of the desired states for 
any controllability index of the linear discrete model, as well as to reduce 
the norms of reconfigured control vectors.  

1 Introduction 

Aircraft actuator fault-safety is a priority requirement in the designing of advanced 
high-speed transport systems [1]. Along with the hardware redundancy [2], the functional 
redundancy is used [3] to accommodate failures of actuators [4]. The functional redundancy 
involves the control reconfiguration [5] between the remaining healthy actuators in such a 
way as to ensure flight safety and, if possible, maintain its nominal dynamics. It can be 
performed by model-based, knowledge-based, and data-based [6, 7] methods. The latter are 
the most versatile, because the use only data on input and output signals and do not require 
the designing the aircraft dynamics model or training the neural networks. A known data-
based control reconfiguration method [7] assumes the reachability of the desired state in 
one discrete step from the start of the reconfiguration. This is often fundamentally 
impossible because actuator mechanical restrictions. In this paper, a method for returning to 
nominal dynamics in several discrete steps, followed by a transition to one-step calculations 
is proposed, and recommendations are given for reducing the control vector norm.  

2 The problem statement 

Let the nominal aircraft dynamics is described by a linear model  
 , = +x Ax Bu  (1) 
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where   is the discrete one step forward shift operator, x  is the n-dimensional 
completely known state vector, u  is the m-dimensional control vector, A  is the state 
matrix, and B is the control matrix [8]. 

An emergency situation is considered, in which actuator failures occur at a discrete step 
fi , leading to a change in the control matrix from B  to fB . It is assumed that the pair of 

matrices A and fB  remains completely controllable [9]. The aircraft flight dynamics with 

the failed actuators is described by the state vector fx , the values of which differ from the 
values of the vector x , starting from the discrete step 1fi +  

 .f f
f = +x Ax B u  (2) 

A system of equations (2) at successive discrete steps (from fi  up to fi i+ ) can be 
written using block matrices in the form 

   :

:

:

,f f

f f

f f

f
i i i

n f i i if
i i i

+

+
+

 
 − =
  

X
A I B U

X
 (3) 

where : 1f f f f f

f f f f
i i i i i i i+ + +

 =  X x x x , : 1f f f f fi i i i i i i+ + +
 =  U u u u , and nI  is 

the identity matrix of order n . A sufficient condition for solvability [10] of this equation 
for the matrix  n−A I  

 :

:

:

f f

f f

f f

R
f
i i i

i i i f
i i i

+

+
+

 
  =
  

X
U 0

X
 (4) 

is written in terms of the maximum rank right annihilator ( R  for any matrix   such 
0RZ = ) and a zero matrix 0 of suitable dimension. The condition (4) uses only the 

known signals on and can be used for data-based control reconfiguration. 
Let the reconfigured state 

rx  and control 
ru  vectors define the model 

 .r r r
f = +x Ax B u  (5) 

In the known data-based reconfiguration method [10] the problem is to determine the 
control vector 

r

r
iu  that returns the aircraft state (5) to the nominal one at the next step 

1 1r r

r
i i+ +=x x . Its solution (if it exists) is found from a condition similar to the equality (4) 
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i i i r
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 (6) 

where : 1 1 1f r f f r

r r r r
i i i i i− + −

 =  X x x x , : 1 1 1f r f f r

r r r r
i i i i i− + −

 =  U u u u , according to the 

expression 
 [1] [1]

: 1 1: 1 .
r f r

r r
i i i k kr− += −u U r  (7) 

The expression (7) degenerates [1]
1( 0)kr + =  if the equation (5) for the step rj i=  

  
1

,
r
jr

f j j j n
j+

 
= = −  

  

x
B u d d A I

x
 (8) 
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turns out to be unsolvable for control r
ju  ( L

f j B d 0 , where L
fB  is the maximum rank 

left-side annihilator of the matrix fB ) [11]. 
In addition, in the general case, the control (7) will not be optimal in the Euclidean norm 

[12] by solving the equation (8) 
r r

r
i f i
 +=u B d , where f

+B  is a pseudoinverse matrix. This 

also applies to further controls r
ju  ( )rj i . Their components can significantly exceed the 

limits [12], valid for actuators. 
Next, we will consider how to reach the nominal dynamics x  in case of actuator failure, 

when the equation (8) is unsolvable, and how to reduce the control vector norm ru .  

3 Reaching the nominal dynamics in case of actuator failures 

If the controllability index [13] of the system (5) is 1, then the equation (8) is solvable 
and the control (7) is in any desired state 1ri +x , i.e. nominal dynamics is reached in 1 step 
from the moment ri . Let the controllability index of the system (5) be equal to 2, when 

rank f f n  = B AB . If we introduce a shift by j  steps forward operator 
j  1( )   , 

then t. The relationship between the states rx  with a shift 2  follows from the model (5) 
 ( )2 2 .r r r r r r r

f f f f = + +  = + + x A Ax B u B u A x AB u B u  (9) 
A system of equations (9) at successive discrete steps (from fi  up to fi i+ ) can be 

written using block matrices in the form 
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A sufficient condition for the solvability of this equation for the matrix 2
n − A I  by 

analogy with the condition (4), has the form 
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       
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It is proposed to find controls 
r

r
iu  and 1r

r
i +u , leading the system (5) in 2 steps from the 

moment ri  to the nominal state 2 2r r

r
i i+ +=x x , from the condition 
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      
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for any state 2ri +x  is solvable for the controls 
r

r
iu  and 1r

r
i +u , because the matrix 2U  has no 

left-side annihilators. 
Let's generalize the multi-step scheme for reaching nominal dynamics for any 

controllability index   when 1rank f f f n−  = B AB A B . From (5) we obtain the 

relationship between the values of the vector rx  with   shifts. 

 1 1 1 .r r r r r
f f f

  − − − = + +  + + x A x A B u A B u B u  (12) 

The controls 
r

r
iu , 1r

r
i +u , …, 1r

r
i +−u , leading the system (5) in   steps from the moment 

ri  to the nominal state 
r r

r
i i+ +=x x , are found from the condition 
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1
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f r r

f r r
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i i i
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r rr r
i i ii i i k k
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k k i i i
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i i i
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 
−− + −+ −+

  
−+ −+ − +

−
− +−

 
 

      
 = =            

  
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X xU u r r

X x

U u

 (13) 

according to the expression 
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In this case, the equation (12) for the step ri   
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 
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  
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u

 

for any value 
ri +x  is solvable for the controls 

r

r
iu , 1r

r
i +u , …, 1r

r
i +−u , because the matrix 

U  has no left annihilators.  

4 Maintaining nominal dynamics in case of actuator failures 

According to the proposed methodology, control reconfiguration starts at step ri . At step 

d ri i= +  the desired nominal state is reached for the first time. But further, on the steps 

dj i i= +  ( 0,  1,  )i =  it is most often impractical to calculate the controls ru  by formulas 

(11) or (14): each time the state vector will be reduced to the nominal value in several steps, 
and between them the values of the vector rx  may differ from the values of x  
considerably. Such "jumping" dynamics is unacceptable. 

After reaching the nominal dynamics for maintaining it, we should return to the one-step 
reconfiguration scheme, similar to the formula (7): 
 [1] [1]

: 1 1: 1 ,r r
j j j r− −  += −u U r  (15) 

where   is the number of steps sufficient to obtain a column-vector 
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The proposed scheme is possible if rank rankf =B B , then r
j j=x x , and the equation (5) 

unlike (8) is solvable for r
ju  for each step j  according to (1) 

  
1

, jr
f j j j n

j+

 
= = −  

 

x
B u Bu Bu A I

x
. (16) 

5 Reducing the norm of the control vector 

At any step rj i , the control r
ju  satisfies the equation (8), which has many solutions 

[11] 
 r R

j f j f
+= +u B d B ω , (17) 

where ω  is an arbitrary vector, which have the minimal Euclidean norm solution 

( ) ,r r R R r
j f j f f j m f f j
 + + += = = −u B d B B u I B B u  

where R
fB  is the right-side maximum rank annihilator of the matrix fB , and r

ju  is a 

control vector from the set (17) [11]. Even some of R
fB  the annihilator columns R

fB  will 

decrease the control norm r
ju . Indeed, let 

 ( )r R R r
j m f f j

+= −u I B B u , (18) 

where ( ) 1R RT R RT
f f f f

−+ =B B B B  is the pseudo-inverse of the full-rank matrix. Then 

( )( ) ( ) ( )1 1
,

TrT r rT R RT R RT r rT r RT r RT R RT r
j j j m f f f f j j j j j

− −
= − = −u u u I B B B B u u u B u B B B u  

rT r rT r
j j j ju u u u  (the non-negative definite quadratic form is subtracted). 

Before the reconfiguration, ( 1)f ri j i  −  the control r
j j=u u  does not correspond to 

the zero equalities (6), (10), (13). Therefore, according to the solvability condition of the 
equation (3) for  n−A I , if the matrix 

 
: 1

: 1

: 1

f r

f r

f r

R
r
i iR r

f i i

i i

−

−
−

 
 =
  

X
B U

X
 (19) 

exists, it is the right annihilator (possibly not of maximum rank) of the matrix fB .  

If reaching the nominal dynamics is carried out according to a one-step scheme (6), then 
at the first appearance of the right-side annihilator, the reconfigured control is calculated. 
The right side of the expression (19) is set to zero. 

In multi-step schemes (10), (13) more steps go through before the start of 
reconfiguration than in the scheme (6). Therefore, the non-zero columns formed on the 
right side of the expression (19) are actually the right annihilators of the matrix fB .  

6 Numerical examples 
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Consider a linearized longitudinal dynamics model of a Boeing 747-100/200 [13] of the 
form (1),  

where 
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 − 

= −

A I

B
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b b b b b b b b b

 
 
 
 
 
 
  

 

1,1 0.1455b = − , 3,1 0.0071b = − , 1,3 0.1494b = − , 3,3 0.0074b = − , 1,5 1.286b = − , 

2,5 0.3122b = − , 3,5 0.0676b = − , 1,6 0.0013b = , 2,6 0.1999b = , 3,6 0.0004b = − , 1,7 0.0035b = . 
The controllability index of this system is 2. 

Let the hypothetical control vectors values u  be set for the nominal flight mode, and the 
2nd actuator is jammed in trim position at the step of 5fi =  

 diag 1 0 1 1 1 1 1 1 1f =B B . 
The simulation showed that the control reconfiguration (10) starts at step 16ri = , and after 
2 steps the nominal dynamics is reached successfully. The norms of reconfigured control 
vectors (11) and (15) are more than nominal ones. The norm is reduced by means of a 
correction (18). 

For the graphs of state and control vectors (Fig. 1), channels were selected that clearly 
show reaching the nominal dynamics in case of failure. 

7 Conclusions 

The study shows that the data-based method of reconfiguration in case of failures of the 
aircraft actuators can be modified to reach the nominal flight dynamics in the emergency 
mode. The modification based on the fact that the data matrix is formed from pairs of state 
vector values not at successive discrete steps, but after a number of steps equal to the 
closed-loop system controllability index after failures. The same number of steps passes 
from the moment the reconfiguration starts until the nominal dynamics is reached. Further, 
to maintain the nominal dynamics, the reconfiguration proceeds according to a one-step 
algorithm, if the rank of the control matrix has not decreased as a result of failures. 
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Fig. 1. States and controls of Boeing 747-100/200 longitudinal dynamics model without failures, with 
failure, and with reconfiguration. 

The modification also allows, by determining a part of the linearly independent right 
annihilators of the control matrix after failures, without its complete identification, to 
reduce the norm of the reconfigured control vectors to meet the given restrictions on their 
deviations.  
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