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Abstract. For the tasks of controlling unmanned vehicles using external 
information signals, in some cases, a change in the time parameters 𝑇𝑇0 of 
periodic data receipt is typical. Such   systems, the processing of incoming 
information in order to form digital control is implemented by digital filters 
(DF), based on discrete samples x[k] of some continuous signal x(t) at 
quantization times tk=k*𝑇𝑇0  Here 𝑇𝑇0[seconds]- the period of discreteness in 
time, k=0,1,2,.. an integer variable, essentially a time counter. The properties 
of the filter are uniquely specified by its specific mathematical model - the 
discrete impulse transient function [1,3] of the filter (DITF), which 
characterizes the filter operation at a specific step 𝑇𝑇0= 1/f0, where f0 (hertz) 
is the frequency.  When the time intervals 𝑇𝑇0of data arrival change, for 
example, due to a change in the transmission conditions in the radio channel, 
or due to a change in the location of the satellite constellation, the filter 
properties will change during operation [2], and if 𝑇𝑇0  changes significantly, 
such filtering can lead to unsatisfactory results. In this paper, for the 
parameters of the digital filter, the adaptation problem is posed and solved, 
which ensures the invariance of the nature DITF, in contrast to the 
stabilization of the frequency properties of the digital filter, studied in [4]. 
To rebuild the numerical parameters of the filter, an algorithm is proposed 
that uses information about the time intervals obtained by direct 
measurement. At the stage of filter development, a special recalculation 
matrix is formed and when the filter is running in real time, the digital filter 
parameters are recalculated. For a model example, the calculation results are 
presented, which show good tuning accuracy, stable filter characteristics, as 
well as the simplicity of the required calculations on board with a significant 
change in time intervals. 

1 Introduction  
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      In automation and in the technology of automatic control of moving objects, digital 
filters are widely used, which provide processing of discrete samples of a continuous signal 
x(t) at fixed times t= k, where (sec) is a certain step of discreteness in time, k = 0, 1,2.. is an 
integer variable that defines the dimensionless discrete time. The required properties of the 
filters are specified by a certain mathematical model - a finite-difference equation 
corresponding to the z-transfer function, or a discrete impulse transient function (DITF) 
[1,3,9] of the filter. It should be noted that these models determine the operation of the filter 
at a specific step value  𝑇𝑇0  = 1/f0, where f0 (hertz) is the frequency of periodic arrival of 
samples x[k] of a continuous signal x(t). 

   The time intervals for the arrival of signals in many technical problems can change 
significantly during operation, for example, as described in [7,9,10]. Such changes are 
especially characteristic for the control of unmanned objects, in which external (outside the 
side of the object) measurements of the movement coordinates necessary for control are used. 
In particular, this may be due to a change in the nature of transmission over the radio path 
[8], and also due to the conditions for receiving and transmitting information from continuous 
objects. The papers [7, 10] consider the changes associated with the satellite measurement 
system. 

Regardless of the reasons for changing the time intervals, we will assume that the discrete 
period 𝑇𝑇0= 1/f0  during the operation of the system can change to the value TN=𝑇𝑇0∙N, where 
N characterizes the multiplicity of the period change relative to the calculated one. 

       If the frequency f0 changes during operation, data arrives at the frequency fN=f0/N, 
the properties of the filter will change, and if the frequency changes significantly, such 
filtering can lead to unsatisfactory results if the device parameters are not rebuilt. This is 
especially critical for digital automatic systems [1], where digital filters operate in a closed 
control loop and a change in their properties can lead to a deterioration in the quality of 
control, and, possibly, to loss of stability of the digital system. 

    Let the processing of a discrete sample y[k] of a continuous signal y(t) be performed 
by a linear digital filter determined by the z-transfer function of the form: 
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 where z = 𝑒𝑒𝑆𝑆∙𝑇𝑇0,  s is the Laplace transform parameter, A( 𝑧𝑧−1 ), B(𝑧𝑧−1 ) are 
polynomials in 𝑧𝑧−1 determined by a specific set of coefficients (𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖). A digital filter of the 
described form, operating at a frequency f0 =1/𝑇𝑇0 , we will call the reference digital filter. In 
the time domain, it corresponds to a difference equation that relates the input u[k] and the 
output y[k] of the digital filter, for time points 𝑡𝑡𝑘𝑘= k∙To the equation takes the form: 

𝑦𝑦[𝑘𝑘]  =−𝑎𝑎1 ⋅ 𝑦𝑦[𝑘𝑘 − 1] −  𝑎𝑎2 ⋅ 𝑦𝑦[𝑘𝑘 − 2] −⋯− 𝑎𝑎𝑛𝑛 ⋅ 𝑦𝑦[𝑘𝑘 − 𝑛𝑛] + 𝑏𝑏0 ⋅ 𝑢𝑢[𝑘𝑘] +  
 𝑏𝑏1 ⋅ 𝑢𝑢[𝑘𝑘 − 1]+. . +𝑏𝑏𝑛𝑛−1 ⋅ 𝑢𝑢[𝑘𝑘 − 𝑛𝑛 + 1] +  𝑏𝑏𝑛𝑛 ⋅ 𝑢𝑢[𝑘𝑘 − 𝑛𝑛]  .                                          (2) 
This difference equation defines one of the ways to implement a digital filter in the form 

of an algorithm for calculating the output coordinate y[k] from the past values of the output 
y[k-i] and the input u[k-i] delayed, i.e. stored in the memory of the calculator at the previous 
calculation steps. For a fixed frequency f0, a digital filter with z-transfer function (1) 
performs temporal signal processing. 

      Let us further assume that the samples arrive not with the calculated interval To, but 
with a changed one - TN= 𝑇𝑇0 ∙N. Here, the number N determines the multiplicity of change 
𝑇𝑇0 . The important point is that the new quantization period 𝑇𝑇0 ∙N should also ensure the 
transmission of the properties of a continuous signal by discrete samples, which, according 
to the Nyquist-Shannon theorem, corresponds to the relation ω_max < π/(𝑇𝑇0*N), where 
ω_max(rad/sec) is the maximum frequency present in the spectrum of a continuous signal. 
When changing the quantization period TN= 𝑇𝑇0 ∙N, the mathematical models and properties 

2

E3S Web of Conferences 446, 05004 (2023) https://doi.org/10.1051/e3sconf/202344605004
HSTD 2023



      In automation and in the technology of automatic control of moving objects, digital 
filters are widely used, which provide processing of discrete samples of a continuous signal 
x(t) at fixed times t= k, where (sec) is a certain step of discreteness in time, k = 0, 1,2.. is an 
integer variable that defines the dimensionless discrete time. The required properties of the 
filters are specified by a certain mathematical model - a finite-difference equation 
corresponding to the z-transfer function, or a discrete impulse transient function (DITF) 
[1,3,9] of the filter. It should be noted that these models determine the operation of the filter 
at a specific step value  𝑇𝑇0  = 1/f0, where f0 (hertz) is the frequency of periodic arrival of 
samples x[k] of a continuous signal x(t). 

   The time intervals for the arrival of signals in many technical problems can change 
significantly during operation, for example, as described in [7,9,10]. Such changes are 
especially characteristic for the control of unmanned objects, in which external (outside the 
side of the object) measurements of the movement coordinates necessary for control are used. 
In particular, this may be due to a change in the nature of transmission over the radio path 
[8], and also due to the conditions for receiving and transmitting information from continuous 
objects. The papers [7, 10] consider the changes associated with the satellite measurement 
system. 

Regardless of the reasons for changing the time intervals, we will assume that the discrete 
period 𝑇𝑇0= 1/f0  during the operation of the system can change to the value TN=𝑇𝑇0∙N, where 
N characterizes the multiplicity of the period change relative to the calculated one. 

       If the frequency f0 changes during operation, data arrives at the frequency fN=f0/N, 
the properties of the filter will change, and if the frequency changes significantly, such 
filtering can lead to unsatisfactory results if the device parameters are not rebuilt. This is 
especially critical for digital automatic systems [1], where digital filters operate in a closed 
control loop and a change in their properties can lead to a deterioration in the quality of 
control, and, possibly, to loss of stability of the digital system. 

    Let the processing of a discrete sample y[k] of a continuous signal y(t) be performed 
by a linear digital filter determined by the z-transfer function of the form: 

 
1 2 3 11

0 1 2 3 1 0
1 1 2 1

1 2 1

( )
0( )

( ) 1

n n n
n n

n n
n n

b b z b z b z b z b z aA z
D z

B z a z a z a z a z

− − − − + −−
−

− − − − + −
−

+ + + + + +
= =

+ + + + +
 (1) 

 where z = 𝑒𝑒𝑆𝑆∙𝑇𝑇0,  s is the Laplace transform parameter, A( 𝑧𝑧−1 ), B(𝑧𝑧−1 ) are 
polynomials in 𝑧𝑧−1 determined by a specific set of coefficients (𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖). A digital filter of the 
described form, operating at a frequency f0 =1/𝑇𝑇0 , we will call the reference digital filter. In 
the time domain, it corresponds to a difference equation that relates the input u[k] and the 
output y[k] of the digital filter, for time points 𝑡𝑡𝑘𝑘= k∙To the equation takes the form: 

𝑦𝑦[𝑘𝑘]  =−𝑎𝑎1 ⋅ 𝑦𝑦[𝑘𝑘 − 1] −  𝑎𝑎2 ⋅ 𝑦𝑦[𝑘𝑘 − 2] −⋯− 𝑎𝑎𝑛𝑛 ⋅ 𝑦𝑦[𝑘𝑘 − 𝑛𝑛] + 𝑏𝑏0 ⋅ 𝑢𝑢[𝑘𝑘] +  
 𝑏𝑏1 ⋅ 𝑢𝑢[𝑘𝑘 − 1]+. . +𝑏𝑏𝑛𝑛−1 ⋅ 𝑢𝑢[𝑘𝑘 − 𝑛𝑛 + 1] +  𝑏𝑏𝑛𝑛 ⋅ 𝑢𝑢[𝑘𝑘 − 𝑛𝑛]  .                                          (2) 
This difference equation defines one of the ways to implement a digital filter in the form 

of an algorithm for calculating the output coordinate y[k] from the past values of the output 
y[k-i] and the input u[k-i] delayed, i.e. stored in the memory of the calculator at the previous 
calculation steps. For a fixed frequency f0, a digital filter with z-transfer function (1) 
performs temporal signal processing. 

      Let us further assume that the samples arrive not with the calculated interval To, but 
with a changed one - TN= 𝑇𝑇0 ∙N. Here, the number N determines the multiplicity of change 
𝑇𝑇0 . The important point is that the new quantization period 𝑇𝑇0 ∙N should also ensure the 
transmission of the properties of a continuous signal by discrete samples, which, according 
to the Nyquist-Shannon theorem, corresponds to the relation ω_max < π/(𝑇𝑇0*N), where 
ω_max(rad/sec) is the maximum frequency present in the spectrum of a continuous signal. 
When changing the quantization period TN= 𝑇𝑇0 ∙N, the mathematical models and properties 

will change - in particular, the z-transfer function of the filter, which is determined by a 
formula of the form: 

D0N(z,TN)= D0(𝑧𝑧𝑁𝑁) . 
This transfer function D0N(z,TN) leads to a change in the properties of the temporal 

characteristics of the filter, relative to the properties of the reference filter: the transition 
function scales along the time axis, it is possible that the characteristics of the temporal 
processing by the digital filter may deteriorate, while, since the new quantization moments 
𝑡𝑡𝑘𝑘= k∙To∙N do not match the calculated k∙To, choose a “similar filter”, i.e. some digital filter 
D0N(z,To⋅N), of the same order, which would completely repeat the properties of the 
reference digital filter when the frequency f0 changes to fN=f0/N is impossible. 

     The paper considers the problem of forming the restructuring of the digital filter 
parameters, i.e. constants {𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖}, which determine the digital filter operation algorithm, so 
that when the frequency fN of information arrival changes, the main temporal properties of 
the digital filter remain unchanged, in the sense of a certain constancy w[ti], otherwise, the 
equivalence of temporal characteristics for different TN. 

Let us explain the term "certain constancy" in more detail due to the non-obviousness of 
the concept. We will consider the digital filters equivalent, in the sense of ensuring the 
constancy of the DIFT, in the case when the points of the DIFT of different filters lie on the 
same curve corresponding to the impulse response function (IRF) of a continuous filter with 
a given characteristic. So, in Fig.1 for filters of the 2nd order are shown: h0(t) - reference 
IRF - dotted line, h05[t] - DITF for TN=0.5 - points with symbol o, h02[k] – DPTF for 
TN=0.2– step function points. Although the characteristics of the filters are different, but 
they lie on the same curve w(t) - such characteristics will be considered equivalent. 

Based on the research conducted using the methods of z-transformation and modal 
control, an algorithm for the operational restructuring of the numerical parameters of the filter 
based on information about the time intervals of information receipt has been developed. A 
technique for calculating the restructuring algorithm based on the preliminary formation of 
special recalculation matrices is proposed. At the stage of real-time filter operation, the 
matrix data is used to recalculate the filter parameters, i.e., algorithm constants (2). A model 
example shows that the proposed approaches make it possible to ensure the constancy of the 
temporal characteristics of the digital filter with a high accuracy with a significant change in 
the periods of information receipt. At the same time, the implementation of the proposed 
approaches does not require significant computing resources on board and can be carried out 
on 8–16-bit microprocessor devices.  

2 The theory of constructing a customizable digital filter  

Let us form the design structure of a customizable digital filter adjusted to the model of a 
continuous reference dynamic system that sets the basic properties of signal processing. 

      Let the reference transfer function We(s) of a continuous filter be given, the discrete 
impulse response of which must be implemented in the digital filter W(z,TN). Then, for a 
physically implemented filter (the degree m of the numerator l is not greater than the degree 
n of the denominator), such a filter can be represented as a continuous dynamic system with 
one input u and one discrete output y, and described by the equations of state and observation 
in the form: 

   x ̇=A∙x+B∙u ,                                                (3) 
   y=C∙x+G∙u , 
where x is an n-dimensional state vector, u is a scalar input signal, constant numerical 

matrices A, B, C, G have sizes (n×n), (n×1), (1×n) and (1×1) respectively and are determined 
by pre-selected constant coefficients a_(ij ) and bj , c_(i ),  g . 
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We choose matrices A, B, and C so that {A,B} form a controlled pair, i.e., for them, the 
conditions of complete controllability [1] were satisfied, and the matrices {A,C} constitute 
an observable pair, i.e. obey the conditions of observability [1,5]. 

An example of such a choice is the choice of the modal matrix A=((diag λ_(i ))) and 
nonzero components of the matrix B and C. Another approach uses the controllability form 
[1] of equations (3), which, for example, for the 3rd order, is given by such a structure matrix:

𝐴𝐴 = [
0 1 0
0 0 1

−𝑎𝑎1 −𝑎𝑎2 −𝑎𝑎3
] ,      𝐵𝐵 = [

0
0
1
],    С=[𝑐𝑐1, 𝑐𝑐2, . . 𝑐𝑐𝑛𝑛].

where 𝑎𝑎𝑖𝑖≠0 are the coefficients of the characteristic equation of the matrix A. In this case,
the transfer function of the system is defined as: 

𝑊𝑊𝑒𝑒(𝑠𝑠) = 𝐷𝐷0(𝑠𝑠)  = 𝑏𝑏0+𝑏𝑏1⋅𝑠𝑠+ 𝑏𝑏2 ⋅𝑠𝑠2  +𝑏𝑏3⋅𝑠𝑠3  +⋯+𝑏𝑏𝑛𝑛−1⋅ 𝑠𝑠𝑛𝑛−1  +𝑏𝑏𝑛𝑛⋅ 𝑠𝑠𝑛𝑛
1+ 𝑎𝑎1⋅𝑠𝑠+𝑎𝑎2⋅𝑠𝑠2  +⋯+𝑎𝑎𝑛𝑛−1⋅𝑠𝑠𝑛𝑛−1    +𝑎𝑎𝑛𝑛 ⋅ 𝑠𝑠𝑛𝑛   . 

 The solution of differential equations of state for constants A and B will take the 
form: 

𝑥𝑥(𝑡𝑡) = 𝑒𝑒𝐴𝐴𝐴𝐴  𝑥𝑥(0) + ∫ 𝑒𝑒𝐴𝐴(𝐴𝐴−𝜏𝜏)𝐵𝐵 ∙ 𝑢𝑢(𝜏𝜏) ∙ 𝑑𝑑𝜏𝜏 𝐴𝐴
0 ,  (4) 

𝑦𝑦(𝑡𝑡) = 𝐶𝐶 ∙ 𝑥𝑥 + 𝑔𝑔 ∙ 𝑢𝑢(𝜏𝜏) . 
  If we consider the Dirac impulse function δ(t) as an input signal u(t), and consider the 

initial conditions x(0) to be zero, then the solution у(t) from (4) with such an input signal will 
correspond to the impulse response w(t ) filter: 

𝑤𝑤(𝑡𝑡) =С∙ 𝑒𝑒𝐴𝐴∙𝐴𝐴𝐵𝐵 + 𝑔𝑔 ∙  𝛿𝛿(𝑡𝑡)   .                                                                                  (5) 
In what follows, we will consider the filter to be inertial, i.e. n>m, whence in (5) we get 

g=0. 
The Laplace image L{w(t)} is W(s) - transfer function, which has the form: 
W(s)= С ∙ (𝐸𝐸 ∙ 𝑠𝑠 − 𝐴𝐴)−1 ∙ 𝐵𝐵 =𝐿𝐿 {С ∙ 𝑒𝑒𝐴𝐴∙𝐴𝐴 ∙ 𝐵𝐵} .                                                           (6) 
w(t)= 𝐿𝐿 −1{С ∙ (𝐸𝐸 ∙ 𝑠𝑠 − 𝐴𝐴)−1 ∙ 𝐵𝐵 }.  
The lattice impulse function, or DIFT, from (6) corresponds to a set of points w(t) at 

quantization times t=𝑡𝑡𝑘𝑘=k∙N ∙𝑇𝑇0 , it is determined by the expression:
𝑤𝑤𝑤𝑤𝑤 ∙ 𝑇𝑇𝑇𝑇] =С∙ 𝑒𝑒А∙𝑇𝑇0∙𝑁𝑁∙𝑘𝑘 ∙ 𝐵𝐵𝐵                                                                                       (7) 
By setting successively integer values k=0, 1, 2, .. you can get a set of specific DIFT 

values: 
𝑤𝑤𝑤0] = С ∙ 𝐵𝐵𝐵𝐵𝐵𝐵 𝑤𝑤𝑤𝑇𝑇𝑇𝑇] = С ∙ 𝑒𝑒𝐴𝐴∙𝑇𝑇0∙𝑁𝑁 ∙ 𝐵𝐵𝐵𝐵𝐵 . . .  𝑤𝑤𝑤𝑤𝑤 ∙ 𝑇𝑇𝑇𝑇] = С ∙ 𝑒𝑒𝐴𝐴∙𝑘𝑘∙𝑇𝑇0∙𝑁𝑁 ∙ 𝐵𝐵.           (8) 
  On the other hand, the DIFT can be defined in terms of the discrete (z-) transfer function 

of the discrete filter We(z), which is calculated as the z-transform of the lattice impulse 
transition function. Such a relationship is defined by the expression: 
𝑊𝑊𝑒𝑒𝑊𝑊𝑊𝑊 = Z{𝐵𝑤𝑤𝑤𝑤𝑤 ∙ 𝑇𝑇0 ]} = Z{𝐵𝐵𝐿𝐿𝐵−1{С ∙ (𝐸𝐸 ∙ 𝑠𝑠 − 𝐴𝐴)−1 ∙ 𝐵𝐵𝐵𝐵𝐵𝑤𝑤𝐵𝑒𝑒𝑛𝑛𝐵𝑠𝑠𝑢𝑢𝑠𝑠𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑢𝑢𝑡𝑡𝑠𝑠𝑛𝑛𝑔𝑔𝐵𝑡𝑡 = 𝑤𝑤 ∙ 𝑇𝑇𝑇𝑇}. (9)

We will form a digital filter at an arbitrary frequency fN=1/TN so that the points of its 
DIFT lie exactly on the ITF of the continuous reference filter, i.e. digital filter to match the 
desired time response at the current TN value. Let the transfer function of such a filter have 
the form: 

𝑊𝑊𝑒𝑒𝑇𝑇(𝑊𝑊,𝑇𝑇𝑇𝑇) = 𝐷𝐷0𝑇𝑇(𝑊𝑊) = 𝐴𝐴𝑁𝑁(𝑧𝑧
−1  )

𝐵𝐵𝑁𝑁(𝑧𝑧−1  ) =  𝑏𝑏𝑏𝑏0+ 𝑏𝑏𝑏𝑏1⋅𝑧𝑧−1  +𝑏𝑏𝑏𝑏2⋅𝑧𝑧−2  +⋯+𝑏𝑏𝑏𝑏𝑛𝑛−1⋅𝑧𝑧−𝑛𝑛+1 +𝑏𝑏𝑏𝑏𝑛𝑛 ⋅ 𝑧𝑧−𝑛𝑛
1+𝑎𝑎𝑏𝑏1⋅𝑧𝑧−1 + 𝑎𝑎𝑏𝑏2 ⋅𝑧𝑧−2  +⋯+𝑎𝑎𝑏𝑏𝑛𝑛−1⋅ 𝑧𝑧—𝑛𝑛+1  +𝑎𝑎𝑏𝑏𝑛𝑛⋅ 𝑧𝑧−𝑛𝑛

 , 
 Then such a filter for times 𝑡𝑡𝑘𝑘=k∙TN corresponds to a finite difference equation of the

form (2) with the notation {𝑎𝑎𝑖𝑖 , 𝑠𝑠𝑖𝑖} replaced by {𝑎𝑎𝑇𝑇𝑖𝑖 ,𝑠𝑠𝑇𝑇𝑖𝑖}for the coefficients (2).
The task of generating a tuning algorithm to ensure the reference nature of the time 

characteristic (or the coefficients z of the transfer function that uniquely determine the DIFT) 
- this complete task is divided into 2 related subtasks:

Ensuring a given type of free movement corresponding to certain roots of the
characteristic equation, i.e., z-transfer function poles is a typical modal control problem. 

Ensuring a given type of lattice DITF. 

(10)
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nonzero components of the matrix B and C. Another approach uses the controllability form 
[1] of equations (3), which, for example, for the 3rd order, is given by such a structure matrix:

𝐴𝐴 = [
0 1 0
0 0 1

−𝑎𝑎1 −𝑎𝑎2 −𝑎𝑎3
] ,      𝐵𝐵 = [

0
0
1
],    С=[𝑐𝑐1, 𝑐𝑐2, . . 𝑐𝑐𝑛𝑛].

where 𝑎𝑎𝑖𝑖≠0 are the coefficients of the characteristic equation of the matrix A. In this case,
the transfer function of the system is defined as: 

𝑊𝑊𝑒𝑒(𝑠𝑠) = 𝐷𝐷0(𝑠𝑠)  = 𝑏𝑏0+𝑏𝑏1⋅𝑠𝑠+ 𝑏𝑏2 ⋅𝑠𝑠2  +𝑏𝑏3⋅𝑠𝑠3  +⋯+𝑏𝑏𝑛𝑛−1⋅ 𝑠𝑠𝑛𝑛−1  +𝑏𝑏𝑛𝑛⋅ 𝑠𝑠𝑛𝑛
1+ 𝑎𝑎1⋅𝑠𝑠+𝑎𝑎2⋅𝑠𝑠2  +⋯+𝑎𝑎𝑛𝑛−1⋅𝑠𝑠𝑛𝑛−1    +𝑎𝑎𝑛𝑛 ⋅ 𝑠𝑠𝑛𝑛   . 

 The solution of differential equations of state for constants A and B will take the 
form: 

𝑥𝑥(𝑡𝑡) = 𝑒𝑒𝐴𝐴𝐴𝐴  𝑥𝑥(0) + ∫ 𝑒𝑒𝐴𝐴(𝐴𝐴−𝜏𝜏)𝐵𝐵 ∙ 𝑢𝑢(𝜏𝜏) ∙ 𝑑𝑑𝜏𝜏 𝐴𝐴
0 ,  (4) 

𝑦𝑦(𝑡𝑡) = 𝐶𝐶 ∙ 𝑥𝑥 + 𝑔𝑔 ∙ 𝑢𝑢(𝜏𝜏) . 
  If we consider the Dirac impulse function δ(t) as an input signal u(t), and consider the 

initial conditions x(0) to be zero, then the solution у(t) from (4) with such an input signal will 
correspond to the impulse response w(t ) filter: 

𝑤𝑤(𝑡𝑡) =С∙ 𝑒𝑒𝐴𝐴∙𝐴𝐴𝐵𝐵 + 𝑔𝑔 ∙  𝛿𝛿(𝑡𝑡)   .                                                                                  (5) 
In what follows, we will consider the filter to be inertial, i.e. n>m, whence in (5) we get 

g=0. 
The Laplace image L{w(t)} is W(s) - transfer function, which has the form: 
W(s)= С ∙ (𝐸𝐸 ∙ 𝑠𝑠 − 𝐴𝐴)−1 ∙ 𝐵𝐵 =𝐿𝐿 {С ∙ 𝑒𝑒𝐴𝐴∙𝐴𝐴 ∙ 𝐵𝐵} .                                                           (6) 
w(t)= 𝐿𝐿 −1{С ∙ (𝐸𝐸 ∙ 𝑠𝑠 − 𝐴𝐴)−1 ∙ 𝐵𝐵 }.  
The lattice impulse function, or DIFT, from (6) corresponds to a set of points w(t) at 

quantization times t=𝑡𝑡𝑘𝑘=k∙N ∙𝑇𝑇0 , it is determined by the expression:
𝑤𝑤𝑤𝑤𝑤 ∙ 𝑇𝑇𝑇𝑇] =С∙ 𝑒𝑒А∙𝑇𝑇0∙𝑁𝑁∙𝑘𝑘 ∙ 𝐵𝐵𝐵                                                                                       (7) 
By setting successively integer values k=0, 1, 2, .. you can get a set of specific DIFT 

values: 
𝑤𝑤𝑤0] = С ∙ 𝐵𝐵𝐵𝐵𝐵𝐵 𝑤𝑤𝑤𝑇𝑇𝑇𝑇] = С ∙ 𝑒𝑒𝐴𝐴∙𝑇𝑇0∙𝑁𝑁 ∙ 𝐵𝐵𝐵𝐵𝐵 . . .  𝑤𝑤𝑤𝑤𝑤 ∙ 𝑇𝑇𝑇𝑇] = С ∙ 𝑒𝑒𝐴𝐴∙𝑘𝑘∙𝑇𝑇0∙𝑁𝑁 ∙ 𝐵𝐵.           (8) 
  On the other hand, the DIFT can be defined in terms of the discrete (z-) transfer function 

of the discrete filter We(z), which is calculated as the z-transform of the lattice impulse 
transition function. Such a relationship is defined by the expression: 
𝑊𝑊𝑒𝑒𝑊𝑊𝑊𝑊 = Z{𝐵𝑤𝑤𝑤𝑤𝑤 ∙ 𝑇𝑇0 ]} = Z{𝐵𝐵𝐿𝐿𝐵−1{С ∙ (𝐸𝐸 ∙ 𝑠𝑠 − 𝐴𝐴)−1 ∙ 𝐵𝐵𝐵𝐵𝐵𝑤𝑤𝐵𝑒𝑒𝑛𝑛𝐵𝑠𝑠𝑢𝑢𝑠𝑠𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑢𝑢𝑡𝑡𝑠𝑠𝑛𝑛𝑔𝑔𝐵𝑡𝑡 = 𝑤𝑤 ∙ 𝑇𝑇𝑇𝑇}. (9)

We will form a digital filter at an arbitrary frequency fN=1/TN so that the points of its 
DIFT lie exactly on the ITF of the continuous reference filter, i.e. digital filter to match the 
desired time response at the current TN value. Let the transfer function of such a filter have 
the form: 

𝑊𝑊𝑒𝑒𝑇𝑇(𝑊𝑊,𝑇𝑇𝑇𝑇) = 𝐷𝐷0𝑇𝑇(𝑊𝑊) = 𝐴𝐴𝑁𝑁(𝑧𝑧
−1  )

𝐵𝐵𝑁𝑁(𝑧𝑧−1  ) =  𝑏𝑏𝑏𝑏0+ 𝑏𝑏𝑏𝑏1⋅𝑧𝑧−1  +𝑏𝑏𝑏𝑏2⋅𝑧𝑧−2  +⋯+𝑏𝑏𝑏𝑏𝑛𝑛−1⋅𝑧𝑧−𝑛𝑛+1 +𝑏𝑏𝑏𝑏𝑛𝑛 ⋅ 𝑧𝑧−𝑛𝑛
1+𝑎𝑎𝑏𝑏1⋅𝑧𝑧−1 + 𝑎𝑎𝑏𝑏2 ⋅𝑧𝑧−2  +⋯+𝑎𝑎𝑏𝑏𝑛𝑛−1⋅ 𝑧𝑧—𝑛𝑛+1  +𝑎𝑎𝑏𝑏𝑛𝑛⋅ 𝑧𝑧−𝑛𝑛

 , 
 Then such a filter for times 𝑡𝑡𝑘𝑘=k∙TN corresponds to a finite difference equation of the

form (2) with the notation {𝑎𝑎𝑖𝑖 , 𝑠𝑠𝑖𝑖} replaced by {𝑎𝑎𝑇𝑇𝑖𝑖 ,𝑠𝑠𝑇𝑇𝑖𝑖}for the coefficients (2).
The task of generating a tuning algorithm to ensure the reference nature of the time 

characteristic (or the coefficients z of the transfer function that uniquely determine the DIFT) 
- this complete task is divided into 2 related subtasks:

Ensuring a given type of free movement corresponding to certain roots of the
characteristic equation, i.e., z-transfer function poles is a typical modal control problem. 

Ensuring a given type of lattice DITF. 

(10)

Synthesis of modal control. Here, task 1 described above is the most important, since the 
arrangement of the poles provides the basic dynamic properties, including the stability 
property, as well as the stability margins of the digital filter. 

We will formulate this problem as a problem of synthesis of modal control. 

3 Ensuring a given type of DITF time characteristic  

To perform this task, it is necessary to calculate the specific values of the coefficients of  
matric C, which determine the output signal of the digital filter, with the calculated 
coefficients {𝑎𝑎𝑎𝑎𝑖𝑖} of the denominators of the z-transfer function. To do this, one should first 
calculate the coefficients {𝑏𝑏𝑎𝑎𝑖𝑖} of the numerators using the difference equation (2) of a linear 
discrete filter of the nth order. Considering in (2) the pulse signal at the input under zero 
initial conditions y[-n]= y[ -n+1]=..= y[0]=0 and using the recurrent solution [1,6], we 
successively obtain specific numerical values of the DITF w[k] . The system of equations for 
calculating the coefficients 𝑏𝑏𝑎𝑎𝑖𝑖of the numerator of the digital filter transfer function from the 
known values of the IRF at times k∙TN and the known coefficients 𝑎𝑎𝑎𝑎𝑗𝑗of the denominator 
can be reduced to the following Gaussian form: 

𝑏𝑏𝑎𝑎0   =  𝑤𝑤[0] , 
𝑏𝑏𝑎𝑎1   =  𝑤𝑤[1] + 𝑎𝑎𝑎𝑎1 ⋅ 𝑤𝑤[0], 
..                                                                                                                      (11) 
𝑏𝑏𝑎𝑎𝑛𝑛 = 𝑤𝑤[𝑛𝑛] + 𝑎𝑎𝑎𝑎𝑛𝑛 ∙ 𝑤𝑤[0] + 𝑎𝑎𝑎𝑎𝑛𝑛−1 ∙ 𝑤𝑤[1]+. . +𝑎𝑎𝑎𝑎2 ⋅ 𝑤𝑤[𝑛𝑛 − 2] + 𝑎𝑎𝑎𝑎1 ∙ 𝑤𝑤[𝑛𝑛 − 1] . 
Such an algebraic system of linear (with respect to unknown parameters {𝑏𝑏𝑎𝑎𝑖𝑖}) is simply 

solved by sequential substitution. On the other hand, the specific values of the points w[i] of 
the time characteristic for the moments of time t_k=k∙TN can be calculated for a given value 
of the discrete step TN and the known transition matrix ФN=𝑒𝑒𝐴𝐴∙𝑇𝑇𝑇𝑇 = 𝑒𝑒𝐴𝐴∙𝑇𝑇0∙𝑇𝑇according to 
formula (7) in the form: 

𝑤𝑤[𝑘𝑘 ∙ 𝑇𝑇𝑎𝑎] =С∙ 𝑒𝑒А∙𝑘𝑘∙𝑇𝑇𝑇𝑇 ∙ 𝐵𝐵,                                                                                        (12) 
where C, B - are matrices defining a continuous standard (8). 
Thus, by calculating the value w[k∙TN] of the time function and substituting these values 

into system (11), we can determine the desired parameters 𝑏𝑏𝑎𝑎𝑖𝑖  of the numerator z, the 
transfer function of the digital filter. 

Based on the calculated parameters { 𝑎𝑎𝑎𝑎𝑖𝑖 ,𝑏𝑏𝑎𝑎𝑖𝑖}  a specific digital filter can be 
implemented. An economical implementation using the direct programming method [1,6] is 
determined by the equations for converting the input signal u[k] into the output signal y[k] 
using auxiliary coordinates 𝑥𝑥𝑖𝑖 in the following form: 

𝑥𝑥1[𝑘𝑘] = 𝑥𝑥2[𝑘𝑘 − 1],  
𝑥𝑥2[𝑘𝑘] = 𝑥𝑥3[𝑘𝑘 − 1],  
…                                                                                                                        (13) 
𝑥𝑥𝑛𝑛−1[𝑘𝑘] = 𝑥𝑥𝑛𝑛[𝑘𝑘 − 1],  
𝑥𝑥𝑛𝑛[𝑘𝑘] = −𝑎𝑎𝑎𝑎1 ∙ 𝑥𝑥𝑛𝑛[𝑘𝑘 − 1] − 𝑎𝑎𝑎𝑎2 ∙ 𝑥𝑥𝑛𝑛−1[𝑘𝑘 − 1]. .−𝑎𝑎𝑎𝑎𝑛𝑛 ∙ 𝑥𝑥1[𝑘𝑘 − 1] + 𝑏𝑏𝑎𝑎𝑛𝑛 ∙ 𝑢𝑢[𝑘𝑘 − 1] .    

The output signal y[k] is calculated (for b_n=0) by the expression: 
𝑦𝑦[𝑘𝑘] = (𝑏𝑏𝑎𝑎1) ∙ 𝑥𝑥𝑛𝑛[𝑘𝑘] + (𝑏𝑏𝑎𝑎2) ∙ 𝑥𝑥𝑛𝑛−1[𝑘𝑘 − 1]. . +(𝑏𝑏𝑎𝑎𝑛𝑛) ∙ 𝑥𝑥1[𝑘𝑘 − 1].                (14)                                 
This implementation method requires TN (2∙n+1) multiplications, 2∙n additions and 

several transfers to be performed at each step. 

4 Technique of formation of the law of restructuring of filter 
parameters  
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      To implement the restructuring of the digital filter parameters when the step 𝑇𝑇0  of the 
discreteness changes to the current value TN, a sequence of steps is proposed, consisting of 
two stages: 1) preliminary calculations at the design stage,  

                                   2) operational calculations when the filter is running in real time. 
Stage 1. The required model of a continuous analog of a digital filter is formed in the 

form of equations of state (1) - matrices A, B, C, G, based on the specific purpose and 
requirements for the dynamic characteristics of the filter - this is a standard task for designing 
digital filters [6,9]. The value of the interval 𝑇𝑇0  is selected, corresponding to the middle of 
the possible range: 𝑇𝑇0=( maxTN+minTN )/2 .  A matrix model of the reference digital filter 
for step 𝑇𝑇0 is built, based on the calculation of the matrix exponent in the form of expansion 
in terms of eigenvalues λ𝑖𝑖  For this, the Sylvester formula [5] is used, which defines the 
representation of a function from a matrix as a composition of functions from the eigenvalues 
λ𝑖𝑖. This approach makes it possible to reduce the complexity of calculations on board at the 
2nd stage. For simple λ𝑖𝑖 ≠0 we get. 

 
Ф0 = 𝑒𝑒𝐴𝐴∙𝑇𝑇0 = ∑ 𝐹𝐹𝑖𝑖  ∙𝑛𝑛

𝑖𝑖 𝑒𝑒λ𝑖𝑖∙𝑇𝑇0 ,  𝐷𝐷0 = ∑ (𝐹𝐹𝑖𝑖  ∙𝑛𝑛
𝑖𝑖 𝑒𝑒λ𝑖𝑖∙𝑇𝑇0 − 𝐸𝐸) ∙ 𝐴𝐴−1 ∙ 𝐵𝐵 =  ∑ (𝐺𝐺𝑖𝑖  ∙𝑛𝑛

𝑖𝑖 𝑒𝑒λ𝑖𝑖∙𝑇𝑇0 − 𝐿𝐿). 

Where 1 1( )
, ,

( )
jn

i j i i i
j i

A E
F G F A B L A B


 

− −


− 
=  =   = 

−
 - are constant 

matrices (n×n), (n×1), (n×1) respectively and are defined by a set of 𝑛𝑛2+2n   numbers. 
The n coefficients 𝑎𝑎𝑖𝑖of the characteristic polynomial of the reference filter are calculated. 

All computed numeric data - 𝑛𝑛2+3n   numbers are loaded into the calculator's memory. 
Stage 2. Directly in the course of work, upon receipt of information signals intended for 

processing by a digital filter, the time interval TN of data receipt is measured, for example, 
as described in [4], the multiplicity factor N= TN/ 0T .  If it differs exceeds 3±5%  from 1, 
restructuring is performed in the following sequence. According to this coefficient, the values 
of the matrix exponent are recalculated:  

 
Ф𝑁𝑁𝑇𝑇 = 𝑒𝑒𝐴𝐴∙𝑇𝑇0𝑁𝑁 = ∑ 𝐹𝐹𝑖𝑖  ∙𝑛𝑛

𝑖𝑖 𝑒𝑒λ𝑖𝑖∙𝑇𝑇0∙𝑁𝑁 ,     𝐷𝐷𝑁𝑁𝑇𝑇 ==  ∑ (𝐺𝐺𝑖𝑖  ∙𝑛𝑛
𝑖𝑖 𝑒𝑒λ𝑖𝑖∙𝑇𝑇0∙𝑁𝑁 − 𝐿𝐿). 

Here the calculations are: n calculations 0i T Ne   , n multiplications (nxn) of a matrix by 
a number, n additions (nxn) of matrices, n multiplications of a vector by a number, n additions 
of vectors. The obtained data determine the matrix difference equations of the digital filter. 

         To simplify calculations at each data processing step, it is advisable to reduce the 
filter program to a compact calculation system (13), (14). In this case, the rearranged 
coefficients iaN of the difference equation (2) of the filter are calculated using the Leverrier-
Faddeev algorithm [5], (n-matrix multiplications (nxn), n-matrix trace calculations, n-matrix 
additions (nxn)). Then the values of n points w[k] of the lattice DITF are determined using 
formulas (8). The obtained point values are used to calculate the coefficients ibN  of the 
numerator of the z-transfer function of the digital filter. When replacing the old values of the 
coefficients with new ones - { ,i iaN bN }  the filter is rebuilt and these values of the 
coefficients are used further in calculations when processing the input signal according to 
algorithms (13), (14). 

5 Model calculation example  

These approaches were used to construct the restructuring law in the problem of 
controlling the lateral movement of an unmanned aircraft of an aircraft scheme. For 
implementation, a 6th order digital filter was chosen that implements a given DITF (Fig. 1). 
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coefficients with new ones - { ,i iaN bN }  the filter is rebuilt and these values of the 
coefficients are used further in calculations when processing the input signal according to 
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5 Model calculation example  

These approaches were used to construct the restructuring law in the problem of 
controlling the lateral movement of an unmanned aircraft of an aircraft scheme. For 
implementation, a 6th order digital filter was chosen that implements a given DITF (Fig. 1). 

This filter provided the suppression of the high-frequency component and the implementation 
of a proportionally differential (PD) control law. To calculate the restructuring law at stage 
2, it was necessary to use 6 recalculation matrices - 216 16-bit numbers, in the process of 
one-time adaptation, 108 multiplications, 10 additions of 16-bit floating-point numbers were 
performed, with the accuracy of representing the results - 4 decimal digits. The results of the 
restructuring of the digital filter with good calculation accuracy are illustrated in Fig. 1b, 
where the dotted line defines a continuous ITF, the points marked with the symbol x lie on 
the DITF for 𝑇𝑇0=0.1, the symbol o defines TN=0.5, the symbol + corresponds to TN=0.25. 
As can be seen from the figures, tuning with high accuracy ensures the constancy of the 
temporal characteristics of the digital filter with a significant (5 times) change in the periods 
of information receipt. 

 
 Fig.1. Transition functions: reference filter (dash-dotted line), discrete filter TN=0.2 s (stepped 

line), discrete filter TN=0.5 s (points 0). 

 
Fig. 2. The equivalent structure of a digital filter. 

References 

1. B.M. Shamrikov, Fundamentals of the theory of digital control systems: a textbook for 
VTU-s. (Moscow, Engineering, 1985) 

2. V.D. Belonogov, Restructuring of digital control algorithms with a variable step of 
discreteness, Bulletin of the Samara State Aerospace University named after 
academician Korolev, 4(46), 119-128 2014 

3. A. Oppenheim, R. Shafer, Digital signal processing, (Moscow: Technosphere, 2006) 
ISBN 5-94836-077-6 

4. V. D. Belonogov, Tunable digital filter with a programmable structure. Patent for 
invention No. 2631976 (RU). Inventions. Useful models. Rospatent. Official Bulletin 
#28, October 2017 

7

E3S Web of Conferences 446, 05004 (2023) https://doi.org/10.1051/e3sconf/202344605004
HSTD 2023



5. A. V. Aho, J. E. Hopcroft, J. D. Ulman, Data Structures and Algorithms (Moscow, 
Williams Publishing House, 2000) 

6. A. Anthony, Digital filters: analysis and design, (Moscow.: Radio and communication, 
1983) 

7. S. V. Sokolov, M. V. Polyakova, P. A. Kucherenko, Analytical synthesis of an adaptive 
Kalman filter based on irregular precise measurements. Measuring equipment, 3 (2018) 

8. E.P. Velikanova, E.P. Voroshilin, Adaptive filtering of the coordinates of the 
maneuvering object when changing the transmission conditions in the radar channel. 
Reports of the Tomsk State University of Control Systems and Radioelectronics, 2(26), 
1, 29-35 2012 

9. V.I. Gadzikovsky, Methods for designing digital filters (Moscow, Hotline - Telecom, 
2007) 

10.  S. Daneshmand, A. Jahromi, A. Broumandan, G. Lachapelle, GNSS space-time 
interference mitigation and attitude determination in the presence of interference signals, 
Proc. of the 24th int. tech. meeting from the satellite division of the institute of navigation 
(ION GNSS 2011), 20–23 September 2011, Portland, OR, 1183–1192 DOI: 
10.3390/s150612180 

 

 

 

 

 

 

 

8

E3S Web of Conferences 446, 05004 (2023) https://doi.org/10.1051/e3sconf/202344605004
HSTD 2023


