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Abstract. In this paper, the approach for synthesis of control law based 
on nonlinear dynamic inversion (NDI) via feedback linearization combined 
with Proportional–integral–derivative (PID) controller in outer loop to 
control supersonic aircraft in its most challenging flight task, i.e., landing in 
the presence of uncertainty in knowledge of model, measurement noise is 
developed. The results obtained demonstrate higher control accuracy, lower 
pilot workload compared to PI in tracking task of pitch angle of a supersonic 
passenger aircraft in presence of uncertainties, noise and in case of control 
surface faults.  

1 Introduction 

The supersonic passenger aircraft as per previous experience has peculiar piloting issues. 
Maintaining the desired climb profile was a full time, high workload task due to the inherent 
flight path sensitivity to small pitch attitude changes, poor outside visibility, and the need for 
frequent pitch trim changes due to centre of lift shifting and CG adjustments as the Mach 
number increased. In addition, the location of the instantaneous centre of rotation near the 
cockpit deprived the pilot of motion cues due to pitch rate. Frequent reference to display was 
found to be essential for smooth control of climb and descent profiles [1]. 

To improve flying qualities qualitatively to level 1 for supersonic aircraft we compared 
various control methods. The dynamic inversion improves the controller performance 
qualitatively in tracking tasks, increasing tracking accuracy and decreasing pilot workload. 
To realize dynamic inversion based on filters is not considered, as it is a cumbersome process 
requires very accurate knowledge of model, requires gain scheduling and is based on a linear 
model. It also requires additional filters, as the aircraft in longitudinal channel is not invertible 
by nature. 

To realize the advantages of dynamic inversion and overcome the disadvantages the 
authors used dynamic inversion via feedback on linear model, and nonlinear dynamic 
inversion via feedback linearization on nonlinear model. It keeps the advantages of inversion, 
eliminating the need of gain scheduling. However, it requires full state feedback and accurate 
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knowledge of the model. Dynamic inversion is a control design methodology that uses a 
feedback signal to cancel inherent dynamics and simultaneously achieve a specified desired 
dynamic response [2]. 

Measurement noise and not accurate knowledge significantly hampers the control 
performance. Among the papers cited in this work, measurement noise is removed using the 
frequency filter but none of them considered Kalman filter to remove noise [3]. To manage 
with measurement noise the authors suggest using Kalman filtering to remove high frequency 
measurement noise. 

2 Nonlinear Dynamic Inversion 

The Nonlinear Dynamic Inversion (NDI) was developed in the late 1970s to provide 
control of nonlinear systems, being applicable to a class of systems known as feedback 
linearizable [4]. It allows to generate a control input using a state diffeomorphism such that, 
when applied to the system, all the relations between a virtual control and the outputs of the 
system are reduced to simple integrators. For the resulting linear system, a single linear 
control law can be adopted without the need for gain scheduling to tune the controller for 
different conditions of the nonlinear system. A detailed explanation of this technique is 
presented, in [4]. 

To exemplify the working principle of the NDI, consider a system of order n with the 
same number m of inputs u and outputs y and affine in the control inputs. Furthermore, the 
outputs coincide typically to the control variables and are assumed to be physically similar 
(for instance, three attitude angles). The extension of the theory to more complex systems is 
rather straightforward. This type of system can be mathematically represented by 

𝑥̇𝑥 = 𝑓𝑓(𝑥𝑥) + 𝐺𝐺(𝑥𝑥)𝑢𝑢  (1) 
𝑦𝑦 = ℎ(𝑥𝑥) (2) 

Where 𝑓𝑓 and ℎ are vector fields in Rn and Rm, respectively, and 𝐺𝐺 is a nxm control 
effectiveness matrix. 

The procedure to obtain the feedback linearization for the inversion of the system consists 
of consecutive time differentiations of y until an explicit dependence on u appears [5]. To 
each derivative, a new state vector is associated, and the derivative of the last state vector is 
given by a nonlinear expression (the virtual control) to complete the transformation. If r time 
differentiations are required, r:m≤n is known as the total relative degree of the system. 
Moreover, if r:m<n, there are n−r:m degrees of internal dynamics, unobservable to the input–
output linearization and which must be Bounded-Input Bounded-Output (BIBO) stable in the 
region of interest to assure the effectiveness of the controller. 

Assuming now ℎ(𝑥𝑥) = 𝑥𝑥 , the first-order time-derivative of 𝑦𝑦 is given by 
𝑦̇𝑦 =  𝑥̇𝑥 = 𝑓𝑓(𝑥𝑥) + 𝐺𝐺(𝑥𝑥)𝑢𝑢                                                    (3) 

Since an explicit dependence on u was already found, the linear relation ν= x dot can be 
imposed if det 𝐺𝐺(𝑥𝑥) ≠0 by selecting:  

𝑢𝑢 = 𝐺𝐺−1(𝑥𝑥)(𝑣𝑣 − 𝑓𝑓(𝑥𝑥))                                                    (4) 
Besides performing the linearization of the system, this input also allows to decouple the 

responses of the control variables since each component of ν only depends on the same 
component of 𝑥𝑥. 

The NDI and DI controller relies on an accurate description of 𝑓𝑓 and 𝐺𝐺 to cancel all the 
nonlinearities of the system. Nevertheless, if inaccuracies exist, the exact cancellation of the 
nonlinearities becomes impossible [6]. 

3 Flight Control law synthesis 
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3 Flight Control law synthesis 

 

DI synthesis is a controller synthesis technique by which existing undesirable dynamics 
are cancelled out and replaced by desired dynamics.  Cancellation and replacement are 
achieved through careful algebraic selection of the feedback function [7]. For this reason, 
this method is also called feedback linearization. It applies to both single-input, single-output 
(SISO) and MIMO systems, provided the control effectiveness function (in the SISO case) 
or the control influence matrix (in the MIMO case) is invertible. The method works for both 
full-state feedback (input-state feedback linearization) and output feedback (input-output 
feedback linearization). A fundamental assumption in this methodology, is that plant 
dynamics are perfectly modelled and can be cancelled exactly [8]. In practice this assumption 
is not realistic. 

Theoretical introduction to dynamic inversion: 
𝑥̇𝑥 = 𝑓𝑓(𝑥𝑥, 𝑢𝑢)                                                                (5) 
𝑦𝑦 = ℎ(𝑥𝑥)      (6) 

𝑥𝑥: State Vector, u: control vector, 𝑦𝑦: output vector (for system with small perturbation the 
above function 𝑓𝑓 is linear in 𝑢𝑢. 

The above equation can be re written: 
𝑥̇𝑥 = 𝑓𝑓(𝑥𝑥) + 𝑔𝑔(𝑥𝑥)𝑢𝑢                                                    (7) 

𝑓𝑓: is a nonlinear state dynamic function, 𝑔𝑔: is a nonlinear control function. By assuming 
𝑔𝑔(𝑥𝑥) is invertible for all values of x, the control law can be obtained from the above equation 
by subtracting 𝑓𝑓(𝑥𝑥) from both sides of the above equation, before multiplying both sides by 
𝑔𝑔 − 1  (𝑥𝑥) 

𝑢𝑢 = 𝑔𝑔 − 1  (𝑥𝑥)[  𝑥̇𝑥  − 𝑓𝑓(𝑥𝑥)]                                          (8) 
The next step is to command our aircraft to specified states. Instead of specifying the 

desired states directly, we can specify the rate of desired states by swapping x  ̇with x  ̇des. 
Methodology to create NDI/DI Control law: 
Step 1: Describe full set of nonlinear equation for the variable to be controlled (e.g., 

angular velocity, angle of attack) 
Step 2: Describe 𝑓𝑓(𝑥𝑥) and 𝑔𝑔(𝑥𝑥) as mentioned in equation (7) for a given flight envelope. 
Step 3: Check whether 𝑔𝑔(𝑥𝑥)  is invertible for the flight envelope for which the flight 

control law is being developed. 
Step 4: If 𝑔𝑔(𝑥𝑥)  is invertible NDI law can be developed successfully, by calculating 

required control input using equation (4) 
Step 5: NDI law can be used as the inner loop controller, which linearizes the plant. 
Step 6: NDI + Aircraft transfer function is equivalent to integrator, if a full state feedback 

is available. After that a PID Controller can be created in the outer loop, to achieve the desired 
response from a nonlinear plant. 

 
Mathematical model used for simulations is mentioned in [9]. For nonlinear simulations 

the mathematical model developed in World-Class Research Center “Supersonic” in 2020–
2025.[10] 

[
𝑢̇𝑢
𝑤̇𝑤
𝑞̇𝑞
𝜃̇𝜃
] = [

−0.0110 0.0433 1.7295 −7.1876
−0.0691 −0.06975 −7.0678 −54.8976
0.00011 0.00116 −0.35407 0.0911

0 0 1.0 0
] [
𝑢𝑢
𝑤𝑤
𝑞𝑞
𝜃𝜃
] + [

−0.4412
−12.388
−0.58446

0
] [𝜂𝜂] 

[
𝑢̇𝑢
𝑤̇𝑤
𝑞̇𝑞
𝜃̇𝜃
] = [

𝑥𝑥𝑢𝑢 𝑥𝑥𝑤𝑤 𝑥𝑥𝑞𝑞 𝑥𝑥𝜃𝜃
𝑧𝑧𝑢𝑢 𝑧𝑧𝑤𝑤 𝑧𝑧𝑞𝑞 𝑧𝑧𝜃𝜃
𝑚𝑚𝑢𝑢 𝑚𝑚𝑤𝑤 𝑚𝑚𝑞𝑞 𝑚𝑚𝜃𝜃
0 0 1.0 0

] [
𝑢𝑢
𝑤𝑤
𝑞𝑞
𝜃𝜃
] + [

𝑥𝑥𝜂𝜂
𝑧𝑧𝜂𝜂
𝑚𝑚𝜂𝜂
0
] [𝜂𝜂] 
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𝐴𝐴 = [
−0.0110 0.0433 1.7295 −7.1876
−0.0691 −0.6975 −7.0678 −54.8976
−0.0001 0.0012   −0.3541 0.0911

0 0 1.0000 0
] 

𝐵𝐵 = [
−0.4412
−12.3880
−0.5845

0
] 

Converting from state space model to equations of motion [11]: 
𝑢̇𝑢 = 𝑥𝑥𝑢𝑢𝑢𝑢 + 𝑥𝑥𝑤𝑤𝑤𝑤 + 𝑥𝑥𝑞𝑞𝑞𝑞 + 𝑥𝑥𝜃𝜃𝜃𝜃 + 𝑥𝑥𝜂𝜂𝜂𝜂 (9) 
𝑤̇𝑤 = 𝑧𝑧𝑢𝑢 𝑢𝑢 + 𝑧𝑧𝑤𝑤 𝑤𝑤 + 𝑧𝑧𝑞𝑞𝑞𝑞 + 𝑧𝑧𝜃𝜃𝜃𝜃 + 𝑍𝑍𝜂𝜂𝜂𝜂  (10) 
𝑞̇𝑞 = 𝑚𝑚𝑢𝑢𝑢𝑢 + 𝑚𝑚𝑤𝑤𝑤𝑤 + 𝑚𝑚𝑞𝑞𝑞𝑞 + 𝑚𝑚𝜃𝜃𝜃𝜃 + 𝑚𝑚𝜂𝜂𝜂𝜂   (11) 
𝜃̇𝜃 = 𝑞𝑞  (12) 

Creating the pitch rate single input single output DI controller: 
𝑥𝑥 = 𝑞𝑞  (13) 
𝑢𝑢 = 𝜂𝜂   (14) 

𝑓𝑓 =  𝑞̇𝑞 = 𝑚𝑚𝑢𝑢𝑢𝑢 + 𝑚𝑚𝑤𝑤𝑤𝑤 + 𝑚𝑚𝑞𝑞𝑞𝑞 + 𝑚𝑚𝜃𝜃𝜃𝜃  (15) 
𝑔𝑔 = 𝑚𝑚𝜂𝜂  (16) 

𝑚𝑚𝜂𝜂 is constant for a linear time invariant system, the inverse of the of the function ‘g’ is 

obtained as constant = ( 1
𝑚𝑚𝜂𝜂
). 

Now for finding the required elevator input for desired pitch rate response, the equation 
of pitch rate should be inverted. The following equation shows the law for calculation of 
required elevator input. 

𝜂𝜂 = [𝑞𝑞 ̇ − (𝑚𝑚𝑢𝑢𝑢𝑢 + 𝑚𝑚𝑤𝑤𝑤𝑤 + 𝑚𝑚𝑞𝑞𝑞𝑞 + 𝑚𝑚𝜃𝜃𝜃𝜃)]/𝑚𝑚𝜂𝜂             (17) 
Substituting 𝑞𝑞 ̇ for desired 𝑞𝑞 ̇ 𝑑𝑑𝑑𝑑𝑑𝑑 

𝜂𝜂 = [𝑞𝑞 ̇ 𝑑𝑑𝑑𝑑𝑑𝑑 − (𝑚𝑚𝑢𝑢𝑢𝑢 + 𝑚𝑚𝑤𝑤𝑤𝑤 + 𝑚𝑚𝑞𝑞𝑞𝑞 + 𝑚𝑚𝜃𝜃𝜃𝜃)]/𝑚𝑚𝜂𝜂  (18) 

Fig. 1. Control scheme of NDI for multi-input multi output system. 

Fig. 2. Implementation of NDI + PI control for supersonic passenger aircraft. 

4

E3S Web of Conferences 446, 06005 (2023) https://doi.org/10.1051/e3sconf/202344606005
HSTD 2023



 

𝐴𝐴 = [
−0.0110 0.0433 1.7295 −7.1876
−0.0691   −0.6975 −7.0678 −54.8976
−0.0001    0.0012   −0.3541 0.0911

0 0 1.0000 0
] 

𝐵𝐵 = [
−0.4412
−12.3880
−0.5845

0
] 

Converting from state space model to equations of motion [11]: 
𝑢̇𝑢 = 𝑥𝑥𝑢𝑢𝑢𝑢 + 𝑥𝑥𝑤𝑤𝑤𝑤 + 𝑥𝑥𝑞𝑞𝑞𝑞 + 𝑥𝑥𝜃𝜃𝜃𝜃 + 𝑥𝑥𝜂𝜂𝜂𝜂     (9) 
𝑤̇𝑤 = 𝑧𝑧𝑢𝑢 𝑢𝑢 + 𝑧𝑧𝑤𝑤 𝑤𝑤 +  𝑧𝑧𝑞𝑞𝑞𝑞 + 𝑧𝑧𝜃𝜃𝜃𝜃 + 𝑍𝑍𝜂𝜂𝜂𝜂              (10) 
𝑞̇𝑞 = 𝑚𝑚𝑢𝑢𝑢𝑢 + 𝑚𝑚𝑤𝑤𝑤𝑤 + 𝑚𝑚𝑞𝑞𝑞𝑞 + 𝑚𝑚𝜃𝜃𝜃𝜃 + 𝑚𝑚𝜂𝜂𝜂𝜂              (11) 
𝜃̇𝜃 = 𝑞𝑞                 (12) 

Creating the pitch rate single input single output DI controller: 
𝑥𝑥 = 𝑞𝑞                                                                                      (13) 
𝑢𝑢 = 𝜂𝜂                                                                                     (14) 

𝑓𝑓 =  𝑞̇𝑞 = 𝑚𝑚𝑢𝑢𝑢𝑢 + 𝑚𝑚𝑤𝑤𝑤𝑤 + 𝑚𝑚𝑞𝑞𝑞𝑞 + 𝑚𝑚𝜃𝜃𝜃𝜃                  (15) 
𝑔𝑔 = 𝑚𝑚𝜂𝜂                                                                 (16) 

𝑚𝑚𝜂𝜂 is constant for a linear time invariant system, the inverse of the of the function ‘g’ is 

obtained as constant = ( 1
𝑚𝑚𝜂𝜂
). 

Now for finding the required elevator input for desired pitch rate response, the equation 
of pitch rate should be inverted. The following equation shows the law for calculation of 
required elevator input. 

𝜂𝜂 = [𝑞𝑞 ̇ − (𝑚𝑚𝑢𝑢𝑢𝑢 + 𝑚𝑚𝑤𝑤𝑤𝑤 + 𝑚𝑚𝑞𝑞𝑞𝑞 + 𝑚𝑚𝜃𝜃𝜃𝜃)]/𝑚𝑚𝜂𝜂             (17) 
Substituting 𝑞𝑞 ̇ for desired 𝑞𝑞 ̇ 𝑑𝑑𝑑𝑑𝑑𝑑 

𝜂𝜂 = [𝑞𝑞 ̇ 𝑑𝑑𝑑𝑑𝑑𝑑 − (𝑚𝑚𝑢𝑢𝑢𝑢 + 𝑚𝑚𝑤𝑤𝑤𝑤 + 𝑚𝑚𝑞𝑞𝑞𝑞 + 𝑚𝑚𝜃𝜃𝜃𝜃)]/𝑚𝑚𝜂𝜂                               (18) 

 

Fig. 1. Control scheme of NDI for multi-input multi output system. 

 

Fig. 2. Implementation of NDI + PI control for supersonic passenger aircraft. 

 

The requirement of full state feedback in NDI + PI controller, made authors look at other 
variants of implementing the NDI controller [12]. The incremental nonlinear dynamic 
inversion was also considered.  

 

Fig. 3. Implementation of Incremental NDI + PI control for supersonic passenger aircraft longitudinal 
channel. 

Incremental NDI overcomes the disadvantages of NDI, by not requiring full state 
feedback and reducing the dependence of control law on full mathematical model. [13] 

4 Classic Kalman filter algorithm 

 To overcome practical problems using NDI due to measurement noise, the classic 
Kalman filter has been implemented within it. 

The state space model of the system is presented as follows: 

[
 
 
 𝑢̇𝑢(𝑘𝑘)
𝑤̇𝑤(𝑘𝑘)
𝑞̇𝑞(𝑘𝑘)
𝜃̇𝜃(𝑘𝑘)]

 
 
 

= 𝐹𝐹𝑘𝑘 [
𝑢𝑢(𝑘𝑘 − 1)
𝑤𝑤(𝑘𝑘 − 1)
𝑞𝑞(𝑘𝑘 − 1)
𝜃𝜃(𝑘𝑘 − 1)

] + 𝐵𝐵𝑘𝑘 [
𝜂𝜂(𝑘𝑘)
𝜂𝜂(𝑘𝑘)
𝜂𝜂(𝑘𝑘)
𝜂𝜂(𝑘𝑘)

]             (19) 

 The object model is defined as follows: 
𝑦̇𝑦 = 𝑓𝑓(𝑦𝑦, 𝑢𝑢, 𝑡𝑡)       (20) 

where, 
 𝑦𝑦𝑇𝑇 = [𝛼𝛼, 𝜗𝜗, 𝑉𝑉]- state vector 
𝑢𝑢𝑇𝑇 = [𝑉𝑉, 𝜔𝜔𝑧𝑧] -control vector 
 The full observation model is defined as follows: 

𝑍𝑍1(𝑡𝑡𝑖𝑖) = 𝛼𝛼(𝑡𝑡𝑖𝑖) + 𝜀𝜀𝛼𝛼(𝑡𝑡𝑖𝑖)           (21) 
𝑍𝑍2(𝑡𝑡𝑖𝑖) = 𝜗𝜗(𝑡𝑡𝑖𝑖) + 𝜀𝜀𝜗𝜗(𝑡𝑡𝑖𝑖)           (22) 
𝑍𝑍3(𝑡𝑡𝑖𝑖) = 𝑉𝑉(𝑡𝑡𝑖𝑖) + 𝜀𝜀𝑉𝑉(𝑡𝑡𝑖𝑖)                   (23) 
𝑍𝑍4(𝑡𝑡𝑖𝑖) = 𝜔𝜔𝑧𝑧(𝑡𝑡𝑖𝑖) + 𝜀𝜀𝜔𝜔𝑧𝑧(𝑡𝑡𝑖𝑖)              (24) 

where, 
 𝑧𝑧𝑇𝑇 = [𝑍𝑍1(𝑡𝑡𝑖𝑖), 𝑍𝑍2(𝑡𝑡𝑖𝑖), 𝑍𝑍3(𝑡𝑡𝑖𝑖)]- sate vector 
 In the scope of this research work, the observation model is represented by (22) 

Prediction Equations 

The Kalman filter predicts next state of the system using these equations. They allow us 
to compute the new mean- the estimate of the state (𝑥𝑥) and the covariance (𝑃𝑃) of the system. 

𝑥𝑥𝑘𝑘|𝑘𝑘−1 = 𝐹𝐹𝑘𝑘𝑥̂𝑥𝑘𝑘−1|𝑘𝑘−1 + 𝐵𝐵𝑘𝑘𝑈𝑈𝑘𝑘 + 𝜀𝜀𝑘𝑘−1            (25) 
𝑃𝑃𝑘𝑘|𝑘𝑘−1 = 𝐹𝐹𝑘𝑘𝑃𝑃𝑘𝑘−1|𝑘𝑘−1𝐹𝐹𝑘𝑘

𝑇𝑇 + 𝑄𝑄𝑘𝑘              (26) 
𝒙̂𝒙𝒌𝒌|𝒌𝒌−𝟏𝟏-the estimate for the state (mean) (𝑥𝑥) at step k given the estimate from step k-1. 
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𝑃𝑃𝒌𝒌|𝒌𝒌−𝟏𝟏-the state covariance matrix (P) at step k given the state covariance matrix from 
step k-1 

𝐹𝐹𝒌𝒌-the state transition matrix at step k (for a given time step), 𝐵𝐵𝑘𝑘 is the control function 
at step k and 𝑈𝑈𝑘𝑘 is the control input at step k; 𝐵𝐵𝑘𝑘𝑈𝑈𝑘𝑘 is the contribution of the controls to the 
state after the transition. 

𝑄𝑄𝑘𝑘- is the process noise covariance matrix at step k; for Kinematic systems that we model 
using Newton’s equations, we assume that the acceleration is constant for each discrete time 
but in reality, it’s not constant due to external and unmodeled forces; for that we assume that 
the acceleration changes by a continuous time zero-mean white noise w(t). As known, the 
noise is changing continuously but we are using a discrete time interval, so we will need to 
integrate in order to get the discrete noise [14];  

One of the ways to easily model the process covariance noise is to assume that the 
acceleration is constant for the duration of each time period, but it differs for each time period, 
for that case Q is computed as [14]:  

Q = 

[
 

Δ𝑡𝑡4

4
Δ𝑡𝑡3

2
Δ𝑡𝑡3

2
Δ𝑡𝑡3

2 Δ𝑡𝑡2 Δ𝑡𝑡
Δ𝑡𝑡2

2 Δ𝑡𝑡 1 ]

𝜎𝜎𝑣𝑣
2,  (27) 

where, 
 𝜎𝜎𝑣𝑣

2 is the variance of the noise 
𝑘𝑘 = 1…n, where n is the length of the measurement 

Update equations 

Measurement equation: 
𝑧𝑧𝑘𝑘 = 𝐻𝐻𝑥𝑥𝑘𝑘 + 𝜐𝜐𝑘𝑘                         (28) 

System uncertainty: 
𝑆𝑆𝑘𝑘 = 𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘|𝑘𝑘−1𝐻𝐻𝑘𝑘

T + 𝑅𝑅𝑘𝑘                        (29) 
𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘|𝑘𝑘−1𝐻𝐻𝑘𝑘

T- projects the covariance matrix into measurement space in order for Kalman 
filter to work; where 𝑃𝑃𝑘𝑘|𝑘𝑘−1 is the state covariance we calculated during the prediction and 
𝐻𝐻𝑘𝑘

T is the measurement function. 
Once the covariance matrix is transited to the measurement space then we add the sensor 

noise, which is represented by 𝑅𝑅𝑘𝑘 

Kalman gain: 

𝐾𝐾𝑘𝑘 = 𝑃𝑃𝑘𝑘|𝑘𝑘−1𝐻𝐻𝑘𝑘
𝑇𝑇𝑆𝑆𝐾𝐾

−1   (30) 
Kk is the Kalman gain at step k, a real number between 0 and 1[15]. Its value performs 

the selection of a mean (the estimate) somewhere between the prediction and the 
measurement [16]. This selection is based on the certainties about the measurement and the 
prediction, which are respectly represented by the covariance matrices 𝑅𝑅𝑘𝑘 and  𝑄𝑄𝑘𝑘 [17,18]; 
so, if we have more certainty about the measurement (small variances in 𝑅𝑅𝑘𝑘) the estimate will 
be close to it but if we have more certainty about the prediction (small variances in 𝑄𝑄𝑘𝑘 the 
estimate will be close to the prediction. 

Residual: 
𝑦̂𝑦𝑘𝑘 = 𝑧𝑧𝑘𝑘 − 𝐻𝐻𝑘𝑘𝑥̂𝑥𝑘𝑘|𝑘𝑘−1              (31) 

We perform the difference between the measurements and the values being predicted 
(predictions) 

State update: 
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𝑃𝑃𝒌𝒌|𝒌𝒌−𝟏𝟏-the state covariance matrix (P) at step k given the state covariance matrix from 
step k-1

𝐹𝐹𝒌𝒌-the state transition matrix at step k (for a given time step), 𝐵𝐵𝑘𝑘 is the control function 
at step k and 𝑈𝑈𝑘𝑘 is the control input at step k; 𝐵𝐵𝑘𝑘𝑈𝑈𝑘𝑘 is the contribution of the controls to the 
state after the transition.

𝑄𝑄𝑘𝑘- is the process noise covariance matrix at step k; for Kinematic systems that we model 
using Newton’s equations, we assume that the acceleration is constant for each discrete time 
but in reality, it’s not constant due to external and unmodeled forces; for that we assume that 
the acceleration changes by a continuous time zero-mean white noise w(t). As known, the
noise is changing continuously but we are using a discrete time interval, so we will need to
integrate in order to get the discrete noise [14]; 

One of the ways to easily model the process covariance noise is to assume that the 
acceleration is constant for the duration of each time period, but it differs for each time period,
for that case Q is computed as [14]:

Q = 

[

Δ𝑡𝑡4

4
Δ𝑡𝑡3

2
Δ𝑡𝑡3

2
Δ𝑡𝑡3

2 Δ𝑡𝑡2 Δ𝑡𝑡
Δ𝑡𝑡2

2 Δ𝑡𝑡 1 ]

𝜎𝜎𝑣𝑣
2, (27)

where,
𝜎𝜎𝑣𝑣

2 is the variance of the noise
𝑘𝑘 = 1…n, where n is the length of the measurement

Update equations

Measurement equation: 
𝑧𝑧𝑘𝑘 = 𝐻𝐻𝑥𝑥𝑘𝑘 + 𝜐𝜐𝑘𝑘 (28)

System uncertainty:
𝑆𝑆𝑘𝑘 = 𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘|𝑘𝑘−1𝐻𝐻𝑘𝑘

T + 𝑅𝑅𝑘𝑘 (29)
𝐻𝐻𝑘𝑘𝑃𝑃𝑘𝑘|𝑘𝑘−1𝐻𝐻𝑘𝑘

T- projects the covariance matrix into measurement space in order for Kalman
filter to work; where 𝑃𝑃𝑘𝑘|𝑘𝑘−1 is the state covariance we calculated during the prediction and
𝐻𝐻𝑘𝑘

T is the measurement function.
Once the covariance matrix is transited to the measurement space then we add the sensor

noise, which is represented by 𝑅𝑅𝑘𝑘

Kalman gain:

𝐾𝐾𝑘𝑘 = 𝑃𝑃𝑘𝑘|𝑘𝑘−1𝐻𝐻𝑘𝑘
𝑇𝑇𝑆𝑆𝐾𝐾

−1 (30)
Kk is the Kalman gain at step k, a real number between 0 and 1[15]. Its value performs

the selection of a mean (the estimate) somewhere between the prediction and the 
measurement [16]. This selection is based on the certainties about the measurement and the 
prediction, which are respectly represented by the covariance matrices 𝑅𝑅𝑘𝑘 and  𝑄𝑄𝑘𝑘 [17,18];
so, if we have more certainty about the measurement (small variances in 𝑅𝑅𝑘𝑘) the estimate will
be close to it but if we have more certainty about the prediction (small variances in 𝑄𝑄𝑘𝑘 the 
estimate will be close to the prediction.

Residual: 
𝑦̂𝑦𝑘𝑘 = 𝑧𝑧𝑘𝑘 − 𝐻𝐻𝑘𝑘𝑥̂𝑥𝑘𝑘|𝑘𝑘−1 (31)

We perform the difference between the measurements and the values being predicted
(predictions)

State update:

 

𝑥̂𝑥𝑘𝑘|𝑘𝑘 = 𝑥̂𝑥𝑘𝑘|𝑘𝑘−1 +  𝐾𝐾𝑘𝑘𝑦̂𝑦𝑘𝑘   (32) 
We update our estimate (calculate the new estate at step k) by adding the last estimate 

(the estimate at step k) to the residual scaled by the Kalman filter.  
Covariance update: 

    𝑃𝑃𝑘𝑘|𝑘𝑘 = (𝐼𝐼 − 𝐾𝐾𝑘𝑘𝐻𝐻𝑘𝑘)𝑃𝑃𝑘𝑘|𝑘𝑘−1              (33) 
We update the covariance by multiplying the last covariance matrix by the factor(𝐼𝐼 −

𝐾𝐾𝑘𝑘𝐻𝐻𝑘𝑘), where I is an identity matrix. 
The main objective of our Kalman filter: to estimate the pitch rate. 
Based on the aircraft longitudinal model, and using the previous value of PITCH RATE, 

the prediction step of the Kalman filter gives us a prediction of the PITCH RATE. Based on 
the mathematical model of supersonic aircraft, on the aircraft model and on the previous 
PITCH RATE estimate a measurement comes in from PITCH RATE sensor. That 
measurement is going to be used to refine the prediction previously calculated. The second 
step, or correction step, compares the measurement with the measurement prediction 
calculated by the mathematical model. There has to be a mechanism in place to give less 
“weight” to an inaccurate measurement and more “weight” to a very good (compared to the 
model) and valid measurement: this is what the Kalman gain (computed by the Kalman filter) 
does. The previously calculated angular velocity is then corrected by a factor equal to the 
Kalman Gain multiplied by the difference between the estimated value and the measured 
value.  

Fig. 4. Block diagram of Kalman filter algorithm. 

5 Simulation 

Simulations are conducted in MATLAB environment. The following simulations were 
conducted: 
- Incremental NDI + PI Controller (referred in text as INDI or Incremental NDI).
- PI controller.
- Incremental NDI + PI Controller performance in presence of uncertainties.
- Incremental NDI + PI controller performance in presence of measurement noise.
- Incremental NDI + PI with Kalman filter to filter measurement noise.
- Incremental variant NDI + PI- experimental results.
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Fig. 5. INDI vs PI controller. 

The simulation result highlights the Incremental NDI control law achieved the desired 
response. 

 

Fig. 6. Performance of INDI Controller in presence of uncertain knowledge of coefficients. 

When the value of coefficients has more than 50% difference in the aircraft and in the 
controller, still the control error is not more than 5%.  

 

Fig. 7. Performance of INDI Controller in presence of measurement noise in angular velocity. 

In presence of measurement noise, the controller performance is significantly diminished, 
and robustness is lost. The steady state error is more than 20%.  
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Fig. 5. INDI vs PI controller.

The simulation result highlights the Incremental NDI control law achieved the desired
response.

Fig. 6. Performance of INDI Controller in presence of uncertain knowledge of coefficients.

When the value of coefficients has more than 50% difference in the aircraft and in the
controller, still the control error is not more than 5%. 

Fig. 7. Performance of INDI Controller in presence of measurement noise in angular velocity.

In presence of measurement noise, the controller performance is significantly diminished,
and robustness is lost. The steady state error is more than 20%.

 

Fig. 8. Performance of Kalman filter to filter angular velocity in pitch measurement noise. 

Fig. 9. Performance of Kalman filter to filter angular velocity in pitch measurement noise. 

The use of Kalman filter to filter noise results in filtering of measurement noise, but leads 
to a small-time delay. For practical scenario to manage with measurement noise, the spline 
method needs to be researched further in comparison with Kalman filter [9]. 

6 Experimental Assessment 

Fig. 10. MAI Ground Based Simulator. 
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The experiments were conducted in pilot vehicle lab of Moscow Aviation Institute. These 
experiments were conducted to assess the controller performance for tracking task of pitch 
angle. [19] 

MAI Ground based simulator is used to study manual control tasks. 
The workstation consists of the following elements: 
- a control stick and simulator connected to a computer by an analog-to-digital converter;
- software.
During the experiment, information about the current task execution error is displayed on

the screen. tracking (Figure 11). 

Fig. 11. Information about the current tracking error displayed on the screen in real time. 

The control stick is a side control handle with variable characteristics (stiffness and 
damping). 

𝑊𝑊𝑝𝑝 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

𝑊𝑊𝑐𝑐 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

𝑛𝑛𝑒𝑒 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

Fig.12. Scheme with Pilot in the loop. 

The following set of experiments were carried out on the nonlinear model developed 
recently in the process of research carried out within the Program for the Development of the 
World-Class Research Center “Supersonic” in 2020–2025.[10] 

First experiment was conducted for tracking task via PI controller 
Second experiment was conducted with the INDI controller 
Third experiment was conducted when half of the section of stabilizer stopped working 

for PI Controller 
Fourth experiment was conducted when half of the section of stabilizer stopped working 

for INDI controller 
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The experiments were conducted in pilot vehicle lab of Moscow Aviation Institute. These 
experiments were conducted to assess the controller performance for tracking task of pitch
angle. [19]

MAI Ground based simulator is used to study manual control tasks.
The workstation consists of the following elements:
- a control stick and simulator connected to a computer by an analog-to-digital converter;
- software.
During the experiment, information about the current task execution error is displayed on 

the screen. tracking (Figure 11).

Fig. 11. Information about the current tracking error displayed on the screen in real time.

The control stick is a side control handle with variable characteristics (stiffness and
damping).

𝑊𝑊𝑝𝑝 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝑊𝑊𝑐𝑐 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑛𝑛𝑒𝑒 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

Fig.12. Scheme with Pilot in the loop.

The following set of experiments were carried out on the nonlinear model developed 
recently in the process of research carried out within the Program for the Development of the 
World-Class Research Center “Supersonic” in 2020–2025.[10]

First experiment was conducted for tracking task via PI controller
Second experiment was conducted with the INDI controller
Third experiment was conducted when half of the section of stabilizer stopped working

for PI Controller
Fourth experiment was conducted when half of the section of stabilizer stopped working

for INDI controller

 

Fig. 13. Black: PI controller; Blue: Incremental NDI + PI; Red: PI with faults; Green: Incremental 
controller + PI with faults. 

The variance of control stick usage, clearly shows, that in experiments when there is no 
fault the nonlinear controller required less usage of stick implying(about two times less( 𝜎𝜎𝑐𝑐2) ) 
less pilot workload. When a section of stabilizer stopped working, the usage of control stick 
for INDI is almost the same, while for PI controller the use of stick usage variance has 
increased 6 times after error( 𝜎𝜎𝑒𝑒2). It clearly shows the INDI control combined with PI is more 
robust. 

The tracking error variance clearly shows, in case when there’s no fault INDI controller 
performance is almost 2 times ( 𝜎𝜎𝑒𝑒2) better than PI controller. After a section of stabilizer 
stopped working, the tracking error for INDI controller has not increased significantly about 
0.2 times compared to without fault, while for PI controller it has significantly increased 
about 3 times.  

The variance results obtained from experiments with pilot in the loop show the robustness 
and tracking accuracy of incremental variant of nonlinear dynamic inversion method. 

Fig. 14. Frequency response: Aircraft + Controller. 

The aircraft + controller open loop frequency response shows that after fault, the PI 
controller has significantly reduced stability margin, whereas the incremental NDI controller 
+ aircraft has no difference in stability margin.
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Fig. 15. Frequency response: Aircraft + Controller. 

The aircraft + controller frequency response shows after fault, the PI controller has 
significantly reduced stability margin, whereas the incremental NDI controller has no 
difference in stability margin. 

Fig. 16. Open Loop frequency response (Pilot + Aircraft(including controller)). 

After the fault the PI controller with pilot in the loop the phase margin and gain margin 
of aircraft with PI controller has reduced and is on the verge of instability, whereas for the 
Incremental NDI  controller there’s no considerable change. 

Fig. 17. Closed Loop frequency response (Pilot + Aircraft (including controller)). 
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Fig. 15. Frequency response: Aircraft + Controller.

The aircraft + controller frequency response shows after fault, the PI controller has
significantly reduced stability margin, whereas the incremental NDI controller has no
difference in stability margin.

Fig. 16. Open Loop frequency response (Pilot + Aircraft(including controller)).

After the fault the PI controller with pilot in the loop the phase margin and gain margin
of aircraft with PI controller has reduced and is on the verge of instability, whereas for the 
Incremental NDI  controller there’s no considerable change.

Fig. 17. Closed Loop frequency response (Pilot + Aircraft (including controller)).

 

In closed loop response, it can be observed after the fault, aircraft with PI controller has 
as significantly reduced closed loop system bandwidth with pilot in the loop. 

Actuator model used: 
For practical executions, we consider first-order actuator dynamics represented by the 

following transfer function 

𝐺𝐺(𝑝𝑝) =  𝐾𝐾𝑎𝑎
𝑇𝑇𝑎𝑎𝑝𝑝 + 1 

1
𝑇𝑇𝑎𝑎

≫
> 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ 𝑖𝑖𝑖𝑖 ℎ𝑖𝑖𝑖𝑖ℎ𝑒𝑒𝑒𝑒 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ 

To avoid actuator saturation a pseudo control hedging based approach needs to be used
in further works. [20] 

7 Conclusions 

NDI is a well-known control method. The realization of NDI control law usually is done 
by using two control loops which complexifies the control law. The authors suggested 
approach to control only fast dynamics by incremental variant of NDI and the use of PID 
Controller in outer loop is significantly simpler to practically realize, it combines the benefit 
of dynamic inversion control accuracy and PID controller robustness in presence of 
uncertainties. The overall controller was demonstrated for tracking tasks in context of 
longitudinal motion of supersonic aircraft- in the landing approach. The aircraft is unstable 
in longitudinal channel, and the pitch rate feedback in outer loop makes it stable, and the 
inner loop of incremental variant of NDI results in dynamic inversion.  

The INDI approach has shown practical results as tested in flight tests.[21] 
The incremental NDI controller has a practical issue of requiring actuator feedback, which 

in reality cannot be obtained. The authors suggest to use system identification of actuator 
model, and use a pseudo model as in [22]. The requirement of angular acceleration 
measurements is another problem which needs to be practically resolved as filtering a 
differentiated signal adds a time delay, which can impact overall performance. [23, 24, 25] 

The use of rotational accelerometers are routinely used in missile systems, there must be 
concers regarding signal noise generated by aircraft structure, engines etc. [26] 

The use of Kalman filter to filter sensor noise, and pre filter to deal with actuator 
saturation makes the overall combination practically realizable. The robustness of system in 
presence of faults, higher tracking accuracy, lower dependence of control law on 
mathematical model of object and lower pilot workload clearly show the potentialities of the 
control law.  

We would like to express our deep appreciation to our teammates, without their contributions, this 
research would not have been complete. 
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