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Abstract. This paper addresses the critical objective of optimizing power 
flow within a region, particularly focusing on the Mangystau region, amidst 
evolving energy demands and the integration of renewable resources. The 
escalating challenges associated with maintaining both system stability and 
economic viability underscore the significance of this research, as 
suboptimal power flow conditions can exacerbate climate change. To 

expedite the solution to the optimal power flow problem, machine learning 
algorithms are explored. Initially, load data from the region is analyzed, and 
various supervised learning algorithms are tested using simulation data to 
predict power flow patterns. The primary concern in the Mangystau region 
lies in the aging infrastructure of oil companies, which operates under 
suboptimal conditions. This study employs neural networks in Matlab to 
simulate the electrical system's parameters, unveiling the intricate 
relationship between optimal system parameters and those of the examined 

system.  Comparing these results with analytical grid modeling, the study 
reveals that system optimization aligns with target values, particularly 
concerning optimal receiver replacement schemes. Keywords: power 
distortion, data analysis, neural networks, power grids, reactive power, 
disaster anticipation. 

1 Introduction 

Kazakhstan, known for its diverse energy resources and significant global energy 

contributions, faces multifaceted challenges and opportunities within its energy landscape. 

The Mangystau region, nestled within this energy-rich nation, is a notable energy generator, 

primarily reliant on its gas resources. Additionally, it once housed Kazakhstan's sole nuclear 

power plant, in Aktau, featuring a 350MW fast neutron reactor, which was operational from 
1973 to 1999. However, the nation has since steered away from nuclear energy as part of its 

energy mix. 

This article seeks to shed light on the intricate electricity supply issues encountered within 

the oil fields of Mangystau Oblast, offering insights into the complex web of energy 

distribution, losses, and optimization strategies. Traditionally, the equivalent method of 

resistance has been the go-to approach for estimating energy losses in power grids, offering 

a simplified means of assessing losses across the network [1]. However, this method's 
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accuracy diminishes when applied to modern enterprise electrical networks grappling with 

dynamic loads that impact the industrial processes. 

In response to these challenges, the realm of computational digital technology and 

artificial intelligence has ushered in a plethora of advanced tools and techniques. Among 

these, neural networks stand out as a progressive and highly precise method for addressing 

the complexities of energy distribution and optimization [2]. 

To delve into the intricacies of energy forecasting and optimization, a neural network 

with error reversal has been developed, consisting of seven neurons and leveraging the 
Levenberg-Marquardt back propagation algorithm. Utilizing the Simulink package within the 

MATLAB software system, this model simulates the operation of a power grid while 

factoring in active and reactive overloading of consumers, driven by stochastic processes 

with normal distributions and exponential-cosine correlative functions [3]. 

 

Fig. 1. The example of the site of the power grid 

Despite their inherent complexity, neural networks excel in capturing intricate 

dependencies, outperforming conventional prediction methods [4]. This potential holds 
promise for refining energy forecasts and optimization. Optimizing the reactive power mode 

relies on compensating devices guided by reactive load forecasts. Gradient optimization 

methods, utilizing iterative algorithms, drive the search for optimal solutions.. 

2 Problem statement 

This section delves into the application of neural networks to tackle the challenge of 

calculating and mitigating losses in a complex power grid, exemplified in Figure 1. The 

examined power grid comprises radial branches and a ring section, housing six substations 
drawing power from 10 kV main lowering substations—a configuration typical of industrial 

power grids. Figure 2 provides a detailed model of this power grid. 
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Fig. 2. IEEE 39 Bus Model 

Power supply systems in oil complex enterprises, including those in the Mangystau 

region, feature substantial capacity, diverse electric receiver loads, and extensive 

geographical dispersion. Meanwhile, socially important facilities pose unique challenges 

related to power quality, characterized by load asymmetry, concentrated locations, and 

heightened sensitivity to electric energy quality. 

The research scope encompasses electric complexes of both oil industry enterprises and 

socially significant facilities, serving as representative examples of diverse enterprises. For 

electrical complexes of socially important objects, characteristics include shorter power lines, 
a higher non-linearity coefficient, and relatively smaller installed capacity.  

 

Fig. 3. Decomposition of the non-sinusoidal curve into sinusoidal components 

It is evident that different enterprises will be impacted differently by varying indicators 

of electric energy quality, making it essential to analyze the key quality indicators that 

influence energy losses within an enterprise's electrical supply system. The primary quality 

indicators that exert a significant influence on energy losses are non-sinusoidal current and 

load power factor. 
Non-sinusoidal curves result from loads with nonlinear volt-ampere characteristics. These 

loads introduce non-sinusoidal currents into the mains, which are characterized by the 

presence of higher harmonic components. This distortion subsequently affects the mains 

voltage curve. Figure 3 illustrates the presence of harmonic distortions in the voltage curve, 

which can be disentangled into its main (first harmonic) and fifth harmonic components using 

the Fourier transform [5]. This results in the formation of a zero sequence, especially in the 

presence of symmetrical loads, as depicted in Figure 4. 
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Non-sinusoidal characteristics pose adverse effects on consumers and electrical energy 

quality control devices. For instance, capacitors in the network may fail due to higher 

harmonic currents, as capacitor resistance is inversely related to the harmonic component's 

order. 

Consequently, the non-sinusoidal nature of the current curve directly influences active 

power loss. While non-sinusoidal voltage doesn't directly impact active power loss, it can 

distort the current curve's sinusoidality. The relationship between losses and current 

distortions is quantified [6]. 
 

 

Fig. 4. Dependence of inductance resistance on the order of harmonic components at different 
resistances on the main harmonic 

Reactive power (reactive energy) is detailed in [7], and it doesn't perform useful work as 

it cannot convert to thermal or mechanical energy. The power factor represents the proportion 

of total power that becomes active power. It's crucial to distinguish it from the reactive power 

factor, which considers the nature of reactive power (inductive or capacitive) and is more 

precise. Moreover, the power factor remains relevant even with higher harmonic voltage or 

current distortions in the network. 

3 Results 

Short-term electric load forecasting currently relies on several factors, including historical 

load patterns, weather forecasts, and data from the previous year. However, these methods 

often require the construction of complex load models[8]. To address this limitation, neural 

network forecasting technology has emerged as a promising alternative, comprising two key 

stages: the selection of neural network architecture and the determination of weights through 

training. 

Optimizing electrical energy loss is crucial and neural network optimization proves 
rational due to its simplicity and ability to provide multiple solutions. It identifies the 

minimum set of corrective devices with maximum impact on power quality. Distortion levels 

depend on factors such as load composition, receiver power, operation modes, spatial 

distribution of consumers, and orientation to the energy source. Assessing consumer impact 

on active power losses considers active power and power factor, with assumptions in place 

for investigation. The optimal solution is chosen based on rationality and efficiency criteria. 
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Fig. 5. Dependence of total power loss 

The analysis of Figure 5 charts reveals promising insights into compensation strategies' 

potential benefits. Specifically, compensating for distortions created by 80% of consumers 
can lead to a remarkable 32% reduction in electric energy losses. Expanding this 

compensation to encompass all consumers results in a slightly higher reduction of 37.4%. 

Notably, the cost associated with implementing compensation devices for 80% compensation 

is considerably lower compared to compensating for all distortions, underscoring the 

economic feasibility of targeted compensation strategies. 

Classical mathematical methods face challenges due to the numerous factors influencing 

electric load and the nonlinear nature of these dependencies[9]. Traditional statistical 

approaches often fall short in providing accurate forecasts in modern conditions, making 
neural network-based methods increasingly attractive. Comparative analyses of forecasting 

techniques have highlighted limitations in some methods, leading to significant estimation 

errors, while others, due to their complex mathematical nature, struggle to find practical 

utility in the power industry. Therefore, there is an ongoing need for the development of 

improved load forecasting methods[10]. 

In addition to conventional approaches, a novel method that combines fuzzy logic and 

neural networks is gaining popularity. Neural networks excel at various tasks like 

approximation, classification, prediction, and estimation without requiring the construction 
of detailed object models, making them resilient to incomplete input data[11]. However, they 

have drawbacks such as slow training and challenges in post-analysis. These limitations can 

be mitigated by integrating fuzzy logic systems. Given the inherent randomness in power 

system load fluctuations, which lack strict periodicity due to natural growth, variable factors, 

and random influences, traditional load prediction methods face substantial challenges.  
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Fig. 6. Forecasting peak loads 

This has opened the door for the adoption of neural networks and fuzzy neural networks, 

with the proposed fuzzy neural network method demonstrating superior forecasting 

accuracy[12]. On average, it exhibits a forecast error of 2.5% for working days and 1.5% for 
weekends. In comparison, regression analysis yields the highest forecast error, with errors of 

3.5% for working days and 3.0% for weekends, while neural networks show an average 

forecast error of 2.9% for working days and 2.1% for weekends. Consequently, forward 

propagation neural networks (multilayer perceptrons) and fuzzy neural networks emerge as 

the optimal tools for accurate electrical load forecasting. 

4 Conclusion 

The analysis encompassed various distribution network modes within an enterprise, each 

characterized by distinct technological processes, network topology, and load profiles, 

leading to the identification of deviations in electric energy quality indicators from the 

desired levels. Subsequently, an effective multidimensional optimization method was 

selected for application in optimizing the distribution network modes of the enterprise, 

targeting minimum power losses, even in the presence of voltage and current distortions.  

The development of methodological support for solving the problem of enhancing the 

efficiency of compensating device utilization, considering diverse functional relationships 
between power losses and electric energy quality indicators, was a crucial aspect of this study. 

Additionally, a computer program was designed to determine the connection points and 

parameters of compensating devices using the established methodology. The simulation 

model, aligned with the analytical findings, validated the correctness of the derived 

expressions and results, providing a comprehensive framework for optimizing distribution 

network modes and improving energy efficiency. 
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