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Building a mathematical model for assessing the 
hazard of emergency situations and the 
formation of types of causes for rolling stock 
derailments 

M.A. Novikov 1 and L.V. Martynenko1* 

1 Irkutsk State Transport University, 664074 Irkutsk, Russia 

Abstract. The technique provides an analytical criterion for selecting the 
one set of numerical data most involved in an emergency out of several ones 
which are the relative deviations of the main factors from the critical ones in 
transport. The criterion is based on finding the theoretical left boundary of 
the interval of each set of deviations. The sets under study are reduced to 
normal distribution laws using a well-known method. The analysis uses 
basic numerical characteristics similar to those used in probability theory 
and mathematical statistics. The proposed method is based on finding the 
central theoretical moments up to the third order inclusive. Explanatory 
demonstration examples are provided. 

1 Introduction 
Part of the accidents may take place due to only one significant cause occurring in a certain 
direction, r €1,2, . . k, but at the same time, in other directions j ≠ R there may be quite small 
values of δ ji  (i € {1, 2, .. k j). The main task is to process the numerical values δ ri comparing 
data sets. This is how a unit of measurement is introduced in [Rudanovsky] 

     𝑑𝑑(𝐶𝐶𝑖𝑖, 𝐾𝐾𝑗𝑗) = √∑ (𝑝𝑝𝑛𝑛 − 𝑘𝑘𝑛𝑛)2/𝑘𝑘𝑛𝑛2]/𝑚𝑚𝑗𝑗
𝑚𝑚𝑗𝑗
1                                           (1) 

where p n , k n are the values of the parameters of the same name, respectively, the 
convergence C i and kernels of class K j ; 

m j – the number of deviations in one class. 
The average value of deviations in the R-th set of deviations. On average, it characterizes 

the attitude towards accidents, but may be far from the truth when δ ri 0 is equal or very close 
zero, and all others are δ rj (j ≠ i 0) and reach quite large values. When δ r 1 = δ r 2 = ……. δrkr 
= δ r0 , it turns out that L r 1 = δ r 0, and this, in the initial approximation, gives, albeit a rough, 
estimate of the direction being studied. When comparing with other directions, such averaged 
values will primarily be involved. A better understanding of this can be clearly felt by 
comparing the two directions G1 and G2. Involvement in an emergency situation is 
numerically expressed by the formula [Rudanovsky]. 
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P 11 =  1/𝐿𝐿1
1/𝐿𝐿11+1/𝐿𝐿21+1/𝑑𝑑3

= 𝐿𝐿21
𝐿𝐿11++𝐿𝐿21

; P 21 =  1/𝐿𝐿21
1/𝐿𝐿11+1/𝐿𝐿21

= 𝐿𝐿11
𝐿𝐿11++𝐿𝐿21

                    (2) 

where L1 is the average of the first direction, L2 is the average of the second direction; 
     PR is a probability of involvement in the accident of the R-th direction (R=1,2) . If the 

deviations in each group (direction) are sufficiently close to each other, these probabilistic 
characteristics will give a fairly accurate forecast. But with a large scatter of deviation values 
in each direction, these characteristics q1 and q2 should be considered only as preliminary, 
giving a rough estimate. 

The subject area being studied completely coincide with a discrete random variable 
(Gmurman) and with a single refinement δ ri (P = 1,2,... K ; i = 1,2,..., n R ) take only positive 
values. The analogue of L R 1 in mathematical statistics is x ƍ2 “sample average in the ƍ-th 
group” of variation series x R 1, x R 2, …, x Ri , x RnR. All known methods of mathematical 
statistics are based on methods of probability theory. Therefore, in the further presentation 
we will adhere to the terminology and methods of mathematical statistics and probability 
theory. Together with the metric of the average δ ri, a quadratic metric is introduced, 

L R2 = √ 1
𝑛𝑛𝑅𝑅

∑ 𝛿𝛿2
𝑅𝑅𝑅𝑅

𝑛𝑛𝑅𝑅
𝑖𝑖=1                                                     (3) 

It is also average, and for δ r 1 = δ r 2 =… =δ RnR = δ r 0, takes the values δ r 0. It is considered 
as an alternative to LR 1, and for it the probabilities of involvement in the accident are also 
considered using similar formulas 

                                           P12 =  𝐿𝐿𝑅𝑅2
𝐿𝐿𝑅𝑅1+𝐿𝐿𝑅𝑅2

; P22 =  𝐿𝐿𝑅𝑅1
𝐿𝐿𝑅𝑅1+𝐿𝐿𝑅𝑅2

                                               (4) 

To evaluate them, let us compare LR1 and  LR2. It is easy to see that 

R R 
= L 2 

12 -L 2 
11 =1/n 2 

R ∑ ∑ (𝛿𝛿𝑟𝑟𝑟𝑟 − 𝛿𝛿𝑅𝑅𝑅𝑅)𝑛𝑛𝑅𝑅
𝑗𝑗=𝑖𝑖+1

𝑛𝑛𝑅𝑅−1
𝑗𝑗=1

2 ≥0 

In mathematical statistics [Gmurman], the value R R is called “variance in the R-th group” 
and is denoted as 

D R =1/ n R  ∑ (𝑥𝑥𝑅𝑅𝑅𝑅
𝑛𝑛𝑅𝑅
𝑖𝑖=1 – 𝑥𝑥R) 2                                                                           

(5) 

Dispersion characterizes the “scatter” of the squared distances of deviations xri relative to 
its center – the “sample average” 𝑥̅𝑥R. Undoubtedly, at a greater distance from 𝑥̅𝑥R , the 
dispersion will take on larger values. 

2 Methods and materials 
Let's check the feasibility of formulas (1), assuming in particular D 2 > D 1 for L 1 = L 2 = L 0 
that the existing relations L 11 = L 21 = L 0 are valid, and then according to formulas (1) it 
should be? In fact, due to the greater scattering of data, both larger and smaller L0, the 
possibility of accidents increases due to δ 2 j < L 0. Consequently, an increase in dispersion 
only increases the propensity for the accident effect. Therefore, common sense refutes the 
validity of formulas like (1), which are not true in principle. First of all, this is explained not 
by coordinate or metric space, but by the existence of variation series x R1, x R2, …… x RnR. 
Let us give a brief confirming example of a small sample size, where for a simple calculation 
all deviations are increased by 10 times. Example 1. 

Let the sets of deviations G 1 ={7;5;3}, G 2 ={9;4;2} be given. Easily calculated sample 
means 

L 11 = 13 (7 + 5 + 3) = 5 = 1
3(9+4+2) = L 21 
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The variances of the sets are: 

D 1 =  13[(7-5) 2 + (5-5) 2 +(3-5) 2 ]=  83; D 2 =  13[ (9-5) 2 + (4-5) 2 + (2-5) 2 ]=  26
3  

For formulas (2) 

P 12 = √101
√83+√101;  P 22 = √83

√83+√101 

But in the second set G2 there is an element δ23 =2, the smallest of those presented. It is it 
that causes the tendency to accident. Based on the above reasoning, it follows: with equal 
sample means L11 = L21 of two sets of deviations, the set with the largest dispersion is more 
involved in the accident. Here, the process of establishing priority for an accident can be 
called a two-stage process. At the first stage, the involvement in the accident is determined 
preliminary, albeit roughly, using formulas (1.1). The second stage involves analysis using 
variance. A more general statement is true when, with a smaller or equal sample mean of one 
set of deviations and a greater dispersion of this set, the mentioned set will be more involved 
in the accident. 

Here, in the first stage, the first set of deviations (where the sample mean is smaller) 
dominates. According to formulas 1.1, the first set is more prone to an accident. At the second 
stage, due to greater dispersion, the first set of sound reasoning also tends to crash. 

A quite interesting situation is the case when, at the first and second stages, equal attitudes 
towards accidents arise. 

Let's look at a simple example 2. 
Assuming the sets of deviations G1={9;4;2}, G2 ={8;6;1} are given. The calculations 

yield L11 = a 1 =5= a 2 = L21. In addition, the “sample range” (the difference between the 
largest and smallest elements) is the same for sets 9-2=7=8-1. The only fact that the accident 
is more involved can be the single smallest deviation value for the second set δ23 =1 (in the 
first set all δ1 j ≥ = 2 (j=1,2,3)). This circumstance is expressed by the negative value of the 
“central theoretical moment [Gmurman], which in terms of mathematical statistics has the 
expression 

M 3 (R)= 1
𝑛𝑛𝑅𝑅

 ∑  (𝑥𝑥𝑅𝑅𝑅𝑅−
𝑛𝑛𝑅𝑅
𝑖𝑖=1 𝑥̅𝑥𝑅𝑅) 3                                                             

(6) 
In this case 

M3 (1) = 13[(9-5) 3+(4-5) 3+(2-5)3]=12 

     M3 (2) = 13[(8-5) 3 + (6-1) 3+ (1-5)3]= –12 

These properties are universal and do not depend on sample selection volumes. The 
simplest patterns appear equally in large and small variation series. The explanation for the 
sets under consideration is simple: for significantly small extreme elements δRj set samples 
GR the value (𝛿𝛿𝑅𝑅𝑅𝑅 − 𝑎̅𝑎𝑅𝑅) will be the smallest negative, and the value (𝛿𝛿𝑅𝑅𝑅𝑅 − 𝑎̅𝑎𝑅𝑅)3 makes a 
decisive contribution to the sum M3 (R). 

In relation to the case under consideration, Statement 3 holds 
With equal first two central theoretical points 

M1(1)= M1(2), M2(1)= M2(2)= D0 

A set of deviations with a lower value is more related to accidents. 
A more difficult question about the involvement of two sets of deviations in the accident 

arises in the case of a smaller sample average of one of the sets and a smaller variance for the 
same set. 

The fundamental factor for the analyses is the central limit theorem established by A.M. 
Lyapunov [Gnedenko B.V., Kolmagorov A.N., Gmurman V.E.]. 
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According to this theorem, almost all ongoing processes are described by the normal 
Gauss law with a probability density [Gmurman V.E] 

f (x) = 1
δ√2𝜋𝜋  𝑒𝑒 ̅ (𝑥𝑥−𝑎𝑎1

2𝛿𝛿2
)2

                                                   (7) 

For the specified distribution, the following properties hold [Gmurman]. 

3 Results and discussion 
Property 1. 

The mathematical expectation M [ X ] of a continuous random variable X(X=(- ∞; + ∞)) 
of the normal distribution law is equal to the parameter 𝑎̿𝑎.  

Property 2. 
The variance D [X] of a continuous random variable X of the normal distribution law is 

equal to δ 2. The parameter δ = √𝐷𝐷[𝑋𝑋] is called “standard deviation”. 
Property 3. Laplace's theorem. 

a continuous random variable X of the normal distribution law falling into the interval (x1 , 
x2 ) is calculated using the formula Φ(t2) - Φ(t2), 

where t 1 =
𝑥𝑥1−𝑎𝑎

δ  ;  t 2 = 𝑥𝑥2−𝑎𝑎
δ  ;Φ (x) - Laplace integral function. 

Due to the non-existence of the last definite integral in quadratures, its values are 
summarized in a table given in all probability theory textbooks under the heading “Appendix 
2”, where the argument x is tabulated in increments of 0.01, the Laplace function with an 
accuracy of 10 -4 . The Laplace integral function Ф(x) is odd. 

Property 4. Three sigma rule. 
For a normal distribution law, the probability of a random variable falling into the interval 

(a -3δ; a +3δ) is 0.9973. Almost all random variables are concentrated in a central interval of 
length 6δ. 

Next, we set the minimum value of the argument x0 at the distribution density of the 
normal distribution law, in which the probability of a random variable falling into the interval 
(- ∞; x 0) is equal to the probability at the point x0 itself. To do this, we bring the argument 
х̿to the unbiased variable z = x - a, and conduct a search in the variables z. This condition 
will be written Φ(z 0) = - z 0 f( z 0 ). Here obviously z will be a negative value, as can be seen 
from the graph f(z) [Gmurman]. A comparison of equality can be carried out by 
differentiating with respect to z the expression Φ (z) = - z 0 f(z), assuming the derivative of a 
definite integral with a variable upper limit at a point equal to the value of the integrand at 
this point [Fichtenholtz]. 

As a result, we get f ( z ) = - f ( z ) +𝑧𝑧+𝑧𝑧
δ2  f ( z ). Considering that the exponential function 

does not vanish at the end points, we obtain z2 =2δ2. 
This implies z1 = −√2δ, corresponding to the negative value of the interval (- ∞; z 1 ). 

Another value z2 = +√2δ corresponds to the interval G2 = (z 2 ; + ∞), where the probability 
of a random variable falling into the interval G2 is equal to the probability at point z2 . 
Returning to the shifted variables, we obtain x1 = 𝑎𝑎 − √2δ; x 2 = 𝑎𝑎 − √2δ. Thus, one can 
formulate 

Property 5.      

For a normal distribution law, the probability of getting into the interval coincides in 
modulus with the value of the probability function at the end point of the interval j1 , also the 
probability of getting into the interval G1 = (- ∞; 𝑎𝑎 − √2δ) coincides in modulus with the 
value of the probability function at the end point of the interval G 1 , also the probability of 
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falling into the interval G2 = ( 𝑎𝑎 + √2δ; + ∞) coincides with the value of the probability 
function at the starting point of the interval G2 . 

In Appendix 2 of the values of the integral function Φ( x ) = 1
√2𝜋𝜋 ∫ 𝑒𝑒−𝑧𝑧2/2𝑥𝑥

0 𝑑𝑑𝑑𝑑 the largest 
value equal to 0.5, for an increasing function occurs at x=5.0. In practice, it is possible for a 
random variable x to fall into the interval (a -5δ; a +5δ) to be reliable. Modeling the initial 
variation series (set of deviations) using the laws of normal distribution greatly simplifies the 
task of determining priorities for the occurrence of emergency situations. In this case, the 
mathematical expectation αR in mathematical statistics is interpreted as a “sample average”, 
in our terminology dR1; the standard deviation, both in probability theory and mathematical 
statistics, is interpreted as the square root of the variance DR. Then for two sets of deviations 
G1 and G2 the parameters aj = dR1 are found; δi = √𝐷𝐷i _ (i =1.2), and based on them, distribution 
laws with probability density functions are compiled 

                              f1 (x) = 1
𝛿𝛿1√2𝜋𝜋 𝑒𝑒 ̅ (𝑥𝑥−𝑎𝑎1

2𝛿𝛿1
2

)2
; f 2 (x) = 1

𝛿𝛿2√2𝜋𝜋 𝑒𝑒 ̅ (𝑥𝑥−𝑎𝑎2
2𝛿𝛿2

2
)2

                    (8)
 

G1 using property 5. 
Example 3. 
Let G1 = {7,6,2} be given. The calculations performed result in a =5; D= 13[(7-5) 2 +(6-5)2 

+ (2-5)2 ]=14/3; δ=√14/3~2.16; b1 = a - √2δ = 5 - √2 ∗ 2.16~1.945 the found numerical 
value of b1 differs slightly (error 0.055) from the true one. Let's consider another example 4. 
Let the set of deviations {8,8,5,3} be given. 

The calculations performed yield: a=6; D =  14[(2 2 +2 2 +(-1) 2 +(-3) 2 + (2-5) 2 ]=9/2;  

b1 =6-√2 √9
2= 6-3=3. The latter exactly coincides with the given one. 

In some cases, the theoretical calculated bound b1 =  𝑎𝑎 − √2δ turns out to be significantly 
smaller in a given initial set. This only means that the values of the set under study are located 
to the right of the left border of the theoretical series. Although the approximate value (𝑎𝑎 −
√2δ) characterizes the theoretical left boundary, 𝑎𝑎 + √2δ will also characterize the right 
theoretical boundary of the data set under study. Thus, theoretically, the entire set of 
deviations G R is within the theoretical interval  𝐽𝐽0 = (𝑎𝑎 − √2δ; 𝑎𝑎 + √2δ). The length of this 
interval is equal to 2√2δ, which will be greater than the range of the set, denoted by T. 

Indeed, even with the most unfavorable scatter: part of the G values in the amount of R1 

is located on the left edge of the interval J00 = ( 𝑎𝑎 −δ; 𝑎𝑎 + √2δ) another part of the G values 
in the amount of n - R1 is located in the right edge of J00. Then 

D= 1
𝑛𝑛  ∑  [𝑅𝑅1(−𝛿𝛿)2 + (𝑛𝑛 − 𝑅𝑅1 + 𝛿𝛿)𝑛𝑛

𝑖𝑖=1
2                (9) 

In this case, the range of the data set is T = 2δ <  2√2δ. The given examples 3-4 express 
the left theoretical boundary of the interval J0. But there will also be similar examples 
demonstrating the right boundary of the interval J0. Obviously, this will be the case for the 
mirror image to G1 ={ 𝛿𝛿11 , 𝛿𝛿12 , …., 𝛿𝛿1 n 1} relative to the center of the set G2 ={𝛿𝛿21, 
𝛿𝛿22,…𝛿𝛿2𝑛𝑛1in which each component 𝛿𝛿2 i of the second set is removed for exactly the same 
distance |𝛿𝛿1 i – a| from the point 𝑎𝑎 ̿, for the set G2 the main numerical characteristics of the 
mathematical expectation and dispersion will be the same: 

1
  𝑛𝑛1

 ∑ 𝛿𝛿2i = 1
𝑛𝑛1

 ∑ (2𝑎𝑎 − 𝛿𝛿1𝑖𝑖) =  
2𝑎𝑎𝑛𝑛1−∑ 𝛿𝛿𝑛𝑛1

𝑖𝑖=1 1𝑖𝑖
𝑛𝑛1

= 2𝑎𝑎 − 1
𝑛𝑛1

∑ 𝛿𝛿𝑛𝑛1
𝑖𝑖=1

𝑛𝑛1
𝑖𝑖=1

𝑛𝑛1
𝑖𝑖=1 1i =2a-a=a        (10) 

D2 = 1
𝑛𝑛  ∑  [(2𝑎𝑎 − 𝛿𝛿1𝑖𝑖) − 𝑎𝑎]2 = 1

𝑛𝑛1
 ∑ (𝑎𝑎 − 𝛿𝛿1𝑖𝑖)2 =  1

𝑛𝑛1
∑ (𝛿𝛿1𝑖𝑖

𝑛𝑛1
𝑖𝑖=1

𝑛𝑛1
𝑖𝑖=1 − 𝑎𝑎)2 =𝑛𝑛

𝑖𝑖=1 _
 D 1      (11) 
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The difference consists only in different theoretical central points of the third order: 
M 3 (2 )= 1

𝑛𝑛1
 ∑  [(2𝑎𝑎 − 𝛿𝛿1𝑖𝑖) − 𝑎𝑎]3 = 1

𝑛𝑛1
 ∑ (𝑎𝑎 − 𝛿𝛿1𝑖𝑖)3 =  − 1

𝑛𝑛1
∑ (𝛿𝛿1𝑖𝑖

𝑛𝑛1
𝑖𝑖=1

𝑛𝑛1
𝑖𝑖=1 − 𝑎𝑎)3 =𝑛𝑛

𝑖𝑖=1
−𝑀𝑀3(1) (12) 

Let's look at supporting example 5. 
Let the set G1 ={10;7;4;3} be given. The calculations yield a1= L11 =6; D1 = 1

4[(10-6) 2 +(7-

6)2+(4-6) 2 +(3-6) 2 ]=  14 (16+1+4+9)= 30
4 . Hence δ 1 =2.74, and the value a - √2δ=6– 

√15 = 2,13. But this value has nothing to do with the smallest value δ13 =3. At the same 
time, the value (a+ √2δ) = 9.87 is quite close to the largest value of the set δ11 =10. 
Consequently, the set under study is “pressed” to the upper boundary of the interval J0. Its 
lower bound is easy to find using the range of the data set. In this case, T=10-3=7, and the 
theoretical lower bound will be equal to (a + √2δ – T) =2.87. The last value of the theoretical 
smallest value corresponds to the smaller value δ1 i = 3 of the data set G1. 

The mirrored row here will be G 2 ={12-10;12-7;12-4;12-3 }= {2;5;8;9}, where also a=6; 

D = √15
2  .The previously calculated value 2.13 approximately expresses the lower limit of 

the set G 2 , equal to δ21 = 2. Here M3 (1)= 14[(4) 3 +(1) 3 +(-2) 3 +(3) 3 ]=  30
4  shows the shift of 

G1 to the right edge of the interval J0. The value M3 (2)= 1
4[(-4) 3 +(-1) 3 +(2) 3 +(3) 3 ]= 

− 30
4  explains the shift of G2 to the left edge of J0 . 
To determine the left edge of the theoretical interval J0 the formula will be used 

 b= {
(𝑎𝑎 − √2δ) 𝑖𝑖𝑖𝑖 𝑀𝑀3 ≤ 0

(𝑎𝑎 + √2δ − T) 𝑖𝑖𝑖𝑖 𝑀𝑀3 > 0
}                               (13) 

Finally, we can formulate the main criterion for the relation to the accident rate of two 
sets of deviations G1, G2, for which the main characteristics up to the third order will be:  

a1 = L11, δ1 = √𝐷𝐷1=√𝐿𝐿21
2 − 𝐿𝐿211; M3 (1) = 1

𝑛𝑛1
 ∑  (𝛿𝛿1𝑖𝑖−

𝑛𝑛1
𝑖𝑖=1 𝑎𝑎1) 3  

span G 1 = T 1 ; a 2 = L 21 ; δ 2 = √𝐷𝐷2; M 3 (2) = 1
𝑛𝑛2

 ∑  (𝛿𝛿2𝑖𝑖−
𝑛𝑛2
𝑖𝑖=1 𝑎𝑎2) 3 ; the range G2 = T2 and 

the values of b 1 , b 2 - the theoretical left boundaries of the sets are calculated using formulas 
1.3. 

Statement 4. 
Of the two sets of deviations G1 and G2, the set for which there is the smallest value of 

the values b1, b2 has a greater relation to accident rates. 
To demonstrate it, let's use example 6. 
Let the sets of deviations G1 ={7;5;3}, G 2 ={8;8;2} be given. 
Calculation of the main characteristics of the sets is obtained: a1 =5; D1 = 14

3 ;  

δ1 ~1.633; M3 (1) =0; a2 =6; D2 =8; δ2 _~ 2.831; M3 (2) =  13(2 3 +2 3 - 4 3 ) = –12. From 
here we find from the formulas b1 = a1 - √2δ 1 ~2.69; b2 = a2 - √2δ 2 ~1.996. 

G2 causes the greatest propensity for an accident. By a simple comparison of the original 
ones with the smallest deviation δ23 =2, one can conclude from common sense that the second 
set of data has a tendency to accidents. 

Statement 4 does not necessarily express a percentage. If b1 and b2 are equal, the 
involvement of two sets in the accident should be considered equal, and the final 
determination of the cause of the accident does not relate to numerical characteristics. 

Let's consider example 7. 
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Let the following sets be given: G1={7;6;2}, G2 ={8;8;2}, which can be visually 
compared. The main numerical characteristics here will be the following: a1 =5; D1 = 14

3 ; δ1 

=2.16; M3 (1) =  1
3  (8+1- 27) = – 16. Then b1 = a1 - √2δ1 ~1.95; b2 = a1 - √2δ1 =2 

The approximate calculations of the values of b1 and b2 are the same here, only with an 
accuracy of 0.05 the value of b1 is less than b2. Therefore, the first set can be considered more 
relevant to accident rates. Generally speaking, both sets of deviations involve the same 
smallest deviations δ13 = δ23 =2. Only in this case, in the set G2, the remaining deviations are 
more distant from zero than the deviations G1. 

In general, we can note the consistency of statement 4 with the previous three. Using the 
same scheme, it is possible to select sets of deviations G1, G2, G3 that are more involved in 
the accident, for each of which the main numerical characteristics are found: sample average; 
dispersion and corresponding standard deviation; central theoretical point of the third order; 
sample range for M3 >0. The quantities b1, b2, b3 are calculated using formulas 1.3. Then it's 
true 

Statement 5 (the main criterion for selecting the set involved in the accident). 
Of the sets of deviations G1, G2, G3, the set corresponding to the smallest value of the 

numbers b1, b2, b3 has a greater relation to the accident rate . 
Let us give an explanatory example 8. 
Let the sets of deviations be given: G1={7;5;3}; G2 ={7;7;4}; G3 ={10;4;4}. 
The main numerical characteristics of the sets are as follows: a 1 =5; D1 =8/3; δ~1.633; 

M3 (1) = 0; a 3 =6, D3 =8; δ 3 ~2.83; M3 (3) = +12; T3 =6. Using formulas (2) we calculate: b1 

=5- √2*1.633~2.69; b2 =6- √2 ∗ 1.414~4; b3 =6+ √2 ∗ 2.83 − 𝑇𝑇3~4. 
 According to statement 5, the smallest of the numbers is: 2.69; 4; 4 is b1, which 

determines the accident propensity of the first set of deviations. And in fact, the smallest 
deviation δ13 =3 leads to the same conclusion. 

4 Conclusion 
Finally, it should be noted that in mathematical statistics the main numerical characteristics 𝑎𝑎,̿ 
D , δ, M 3 ... are determined the more accurately, the larger the sample volume provided is. 
This is explained by some general property of the available random variables. In sets of 
deviations, all quantities δ ri ( R €{ 1;2,….., K ; j € {1,2,… n R }) do not depend on each other, 
and therefore the main numerical characteristics do not depend on the number of factors 
considered. But the analysis methods are similar. 

Particular attention should be paid to the positive influence of the methods of probability 
theory and mathematical statistics on the analysis of numerical data. 

The influence of dispersion on a greater propensity to an emergency situation has been 
established. For two or more sets of deviations, a criterion for the involvement of one or 
another set in the accident was identified. It is found by comparing the values that determine 
the theoretical left boundary of the sets, calculated from the main numerical characteristics 
of the given sets of deviations. The main criterion for involvement in an accident has been 
compiled for two and three sets of deviations, formulated by statements 4 and 5. The 
possibility of compiling involvement in an accident using basic numerical characteristics has 
been shown. 
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