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Abstract. The article deals with the application of matrix modeling to the 
group pursuit of objects. The article applies matrix modeling to the group 
pursuit of objects based on models of actual objects' behavior and can be 
used in simulation modeling packages, virtual simulation of game processes, 
or transport logistics processes. The results of the article may be in demand 
in creating virtual reality models of delivery of postal goods by drones in 
creating an optimized hub - network. The author proposes to consider the 
model of group pursuit of multiple targets. Methods of pursuit by individual 
subjects are various modifications of methods of parallel approach, pursuit, 
and proportional approach. The author constructed a matrix reflecting the 
number of chasers and the number of targets. The conducted research 
contains a model of group pursuit of a set of targets. The model contains 
optimization based on the least time of simultaneous achievement of goals. 
These results are in the certificate of registration of programs for computers. 
Objectives assume that in the method of dynamic programming of matrices 
of distribution of pursuers, we will construct the matrix at each discrete 
moment, because the number of pursuers and objectives, and their strategies 
can change at any moment. The methods of forming matrices of distribution 
of pursuers and goals can be in demand in the design of virtual reality 
systems for game tasks. Such tasks simulate the process of group pursuit, 
running away, and evasion. The method of dynamic programming for the 
distribution matrix of pursuers on targets will allow us to move to an 
automated distribution process with optimization according to the specified 
parameters. 

1 Introduction 
This article forms the principles of automated distribution of pursuers to targets based on the 
selected target function. The model of the article proposes algorithms for modifying the 
trajectories of pursuers to reach targets simultaneously or according to a set schedule. The 
author considers the formation of a library of pursuit methods. 

The works [1-4] raise the issues of the coordinated behavior of a group of pursuers and 
targets. The author considered works [5-9] on general theoretical and practical issues in 
solving problems. The author used sources [10-13] to analyze stalker targeting. 

This article generates a matrix of pursuers' achievement of goals. Assigning goals to 
pursuers is carried out by the following principle. The pursuers achieved all combinations of 
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goals, and the combination of a minimum value of criterion from the formed set with the 
maximum value was chosen. 

Consider group pursuit of a set of goals: 𝑁𝑁 pursuers catch up with 𝑀𝑀 goals. Let's form a 
matrix of distribution of pursuers by goals: 

Ψ𝑖𝑖𝑖𝑖, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖 = 1. . 𝑁𝑁, 𝑗𝑗 = 1. . 𝑀𝑀. 
Each cell Ψ𝑖𝑖𝑖𝑖  contains information about the phase coordinates of the 𝑖𝑖-th pursuer and 𝑗𝑗 

– target. The matrix Ψ𝑖𝑖𝑖𝑖  contains information about the method by which the 𝑖𝑖-th pursuer 
pursues the 𝑗𝑗-th target. 

Based on the data stored in the cells of the matrix, it accesses the library of calculations 
of the chaser's control vectors. 

Each cell of the matrix Ψ𝑖𝑖𝑖𝑖can calculate, as an example, the predicted time for the 𝑖𝑖–ер 
pursuer to reach the 𝑗𝑗-th goal 𝑡𝑡𝑖𝑖𝑖𝑖. 

In each resulting sample 𝐴𝐴𝑘𝑘 = {Ψi1kj1k
… Ψinkjnk}, the maximum value of achieve-

ment times 𝑡𝑡𝑘𝑘 = 𝑀𝑀𝑀𝑀𝑀𝑀 {𝑡𝑡𝑖𝑖𝑖𝑖}. Suppose in the sample of Table 1, we should find the maximum 
value of times {𝑡𝑡21, 𝑡𝑡23, 𝑡𝑡32, 𝑡𝑡41}. 

The maximum value of 𝑡𝑡𝑘𝑘 in the sample 𝐴𝐴𝑘𝑘 is dictated by the fact that all values of 𝑡𝑡𝑖𝑖𝑖𝑖,  
which depend on vectors of velocities of pursuers and targets, as well as their admissible 
angular velocities, can be changed upward to the value of 𝑡𝑡𝑘𝑘.  

In sample 𝐴𝐴𝑘𝑘 it is possible to increase other values of times when pursuers reach targets 
𝑡𝑡𝑖𝑖𝑖𝑖  up to value 𝑡𝑡𝑘𝑘, due to vectors of pursuers' and targets' velocities, values of angular veloc-
ities.  

When the array of samples {𝐴𝐴𝑘𝑘} with corresponding values of times {𝑡𝑡𝑖𝑖𝑖𝑖}, is obtained, the 
minimum time 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑀𝑀𝑀𝑀𝑛𝑛 {𝑡𝑡𝑘𝑘} should be found. Thus, the optimal time of group achieve-
ment of multiple goals simultaneously will be obtained. 

2 Materials and methods 
Algorithms for calculating the chaser's next step and estimating the time of the chaser 
reaching the target. 

Fig. 1 shows a block diagram of the function algorithm for calculating the next step and 
the pursuer's velocity vector. 
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Fig. 1. Block diagram for calculating the phase coordinates of the chaser in the next step. 

Fig. 2 shows a block diagram of the function for calculating the time and distance of the 
chaser reaching the target. The variable 𝜀𝜀 is the threshold value of the distance from the 
chaser to the target, then the targets reached. 

When the target moves along a predetermined trajectory, the flowchart shown in Fig. 2 
can give an estimate of the time 𝑡𝑡𝑖𝑖𝑖𝑖 for the 𝑖𝑖-th pursuer to reach the 𝑗𝑗-th target. The number 
of iterations of the pursuit process 𝑁𝑁𝑖𝑖𝑖𝑖.can serve as an output parameter of the function pre-
sented in Fig. 2. The value of 𝑁𝑁𝑖𝑖𝑡𝑡, the number of iterations, is the output parameter of the 
function for calculating the time and distance of the chaser reaching the target.  

When the target takes retaliatory steps to avoid reaching it, we propose to estimate the 
time differently. This requires that the predicted trajectories be constructed as a composite of 
segments of straight lines, arcs of circles, square and cubic parabolas, and other known lines, 
so as not to solve boundary problems in the computational cycle. 
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Fig. 2. Block diagram of the function for calculating the time and distance for the pursuer to reach the 
target. 

Forming the library of control vector calculations. 
It is assumed that the distribution matrix Ψ𝑖𝑖𝑖𝑖, where 𝑖𝑖 = 1. . 𝑁𝑁, 𝑗𝑗 = 1. .𝑀𝑀 of pursuers on 

targets will be constructed at each discrete time interval. Each cell of matrix Ψ𝑖𝑖𝑖𝑖  will store 
information about the pursuit method. Based on this information, the library of functions for 
calculating control vectors 𝑢⃗𝑢  (Table 1) will be accessed. 

This library of control vector calculations contains methods of pursuit on the plane, in 
space, and on the surface. Parallel convergence methods are calculated on the plane, in space, 
and on the surface. Proportional approach methods are calculated on the plane and in space. 
Three-point methods are computed on the plane and in space. Changed chase methods are 
computed on the plane and in space when the chaser can be controlled by changing the al-
lowable curvature of trajectories. Modified methods of parallel approach are computed on 
the plane and in space. 

Modification of the parallel approach and chase methods allows us to construct a network 
of predicted trajectories that admit different boundary conditions. 

Table 1 contains the materials of the author of the article, based on the video of his 
YouTube channel @alexdubanov5999 (Alexander Dubanov). 

Table 1. Methods of pursuing a target moving along a certain trajectory. 

Chase method on the plane and space: 
𝑢⃗𝑢 𝑖𝑖 = 𝑇⃗𝑇 𝑖𝑖−𝑃⃗𝑃 𝑖𝑖

|𝑇⃗𝑇 𝑖𝑖−𝑃⃗𝑃 𝑖𝑖|
, 𝑇⃗𝑇 𝑖𝑖 - target position, 𝑃⃗𝑃 𝑖𝑖 - pursuer's 

position. 
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Continued of Table 1.  

The method of parallel convergence on the 
plane: 𝑢⃗𝑢 = 𝐾𝐾−𝑃𝑃

|𝐾𝐾−𝑃𝑃|, 𝑇𝑇 - target position, 𝑃𝑃 - point of 
the pursuers' position, 𝐾𝐾 - point on the circle of 
Apollonius, uniquely defined by the points 𝑃𝑃 , 𝑇𝑇 

and the velocity vector of the target 𝑉⃗𝑉 𝑇𝑇. 
 

The method of parallel approach in space: 𝑢⃗𝑢 =
𝐾𝐾−𝑃𝑃
|𝐾𝐾−𝑃𝑃|,𝑇𝑇 - target position, 𝑃𝑃 - pursuer's position 

point, 𝐾𝐾 - point on the circle of Apollonius, the cir-
cle of Apollonius lies in the plane Σ, formed by the 
points 𝑃𝑃, 𝑇𝑇 and the velocity vector of the target 𝑉⃗𝑉 𝑇𝑇. 

This example shows the case when the velocity 
vector of the pursuer is directed arbitrarily. After 
some time, the pursuer's velocity is directed to a 

point on the Apollonius circle.  
Surface pursuit method: u⃗ i = Pi+1−Pi

|Pi+1−Pi|
, where 

Pi+1 - is the result of the intersection of the surface 
z = f(x, y), plane PiPi

∗Ti and spheres Si centered at 
Pi and radius |V⃗⃗ T| ∙ ∆t. Point Pi

∗ - orthogonal projec-
tion of a point Pi on the plane XY. Expressing a con-
trol vector is necessary to produce a unified refer-

ence to the library.  

The method of parallel approach on the surface: 
𝑢⃗𝑢 𝑖𝑖 = 𝑃𝑃𝑖𝑖+1−𝑃𝑃𝑖𝑖

|𝑃𝑃𝑖𝑖+1−𝑃𝑃𝑖𝑖|
,where 𝑃𝑃𝑖𝑖+1 is the result of intersec-

tion of surface 𝑧𝑧 = 𝑓𝑓(𝑥𝑥, 𝑦𝑦), plane 𝑃𝑃𝑖𝑖+1𝑃𝑃𝑖𝑖+1
∗ 𝑇𝑇𝑖𝑖+1 and 

sphere 𝑆𝑆𝑖𝑖 with center in point 𝑃𝑃𝑖𝑖 and radius |𝑉⃗𝑉 𝑇𝑇| ∙
∆𝑡𝑡. Point  𝑃𝑃𝑖𝑖+1

∗  - is the orthogonal projection of the 
point 𝑃𝑃𝑖𝑖+1 on the plane 𝑋𝑋𝑋𝑋.  

It is necessary to express the control vector in 
order to make a unified reference to the library. A 
one-parameter family of planes Φ𝑖𝑖 parallel to each 

other.   

Proportional convergence method:  
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 𝑘𝑘 ∙ 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑  ,∆𝜑𝜑 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (|𝑇𝑇𝑖𝑖|2+|𝑇𝑇𝑖𝑖+1|2−|𝑇𝑇𝑖𝑖−𝑇𝑇𝑖𝑖+1|2
2∙|𝑇𝑇𝑖𝑖|∙|𝑇𝑇𝑖𝑖+1|

),  

∆𝜃𝜃 = 𝑘𝑘 ∙ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (|𝑇𝑇𝑖𝑖|2+|𝑇𝑇𝑖𝑖+1|2−|𝑇𝑇𝑖𝑖−𝑇𝑇𝑖𝑖+1|2
2∙|𝑇𝑇𝑖𝑖|∙|𝑇𝑇𝑖𝑖+1|

),  
𝑃𝑃𝑖𝑖+1 =

[
 
 
 
 𝑉𝑉𝑃𝑃 ∙ ∆𝑡𝑡 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐 (𝑘𝑘 ∙ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (|𝑇𝑇𝑖𝑖|2+|𝑇𝑇𝑖𝑖+1|2−|𝑇𝑇𝑖𝑖−𝑇𝑇𝑖𝑖+1|2

2∙|𝑇𝑇𝑖𝑖|∙|𝑇𝑇𝑖𝑖+1| ))

𝑉𝑉𝑃𝑃 ∙ ∆𝑡𝑡 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠 (𝑘𝑘 ∙ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (|𝑇𝑇𝑖𝑖|2+|𝑇𝑇𝑖𝑖+1|2−|𝑇𝑇𝑖𝑖−𝑇𝑇𝑖𝑖+1|2
2∙|𝑇𝑇𝑖𝑖|∙|𝑇𝑇𝑖𝑖+1|

))]
 
 
 
 
 

,𝑢⃗𝑢 𝑖𝑖 = 𝑃𝑃𝑖𝑖+1−𝑃𝑃𝑖𝑖
|𝑃𝑃𝑖𝑖+1−𝑃𝑃𝑖𝑖|
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Continued of Table 1.  

Three-point approach method:  
(𝑃𝑃𝑖𝑖+1 − 𝑃𝑃𝑖𝑖)2 = (𝑉⃗𝑉 𝑖𝑖 ∙ ∆𝑡𝑡)2

𝑃𝑃𝑖𝑖+1 = (1 − 𝜏𝜏) ∙ 𝑄𝑄 + 𝜏𝜏 ∙ 𝑇𝑇𝑖𝑖+1
,𝑢⃗𝑢 𝑖𝑖 = 𝑃𝑃𝑖𝑖+1−𝑃𝑃𝑖𝑖

|𝑃𝑃𝑖𝑖+1−𝑃𝑃𝑖𝑖|
. 

The application of the method is convenient 
when the target moves along a ballistic trajectory. 

 
A modification of the parallel convergence 

method on the plane: a network of parallel lines: 
𝑓𝑓𝑖𝑖+1(𝑠𝑠) = 𝑓𝑓𝑖𝑖(𝑠𝑠) + 𝑇𝑇𝑖𝑖+1 − 𝑇𝑇𝑖𝑖, where 𝑠𝑠 - line arc 

length, 𝑇𝑇𝑖𝑖 - an array of reference points of the target 
trajectory. Solving the equation (𝑓𝑓𝑖𝑖+1(𝑠𝑠) − 𝑃𝑃𝑖𝑖)2 =
(𝑉𝑉𝑃𝑃 ∙ ∆𝑡𝑡)2 relative to the parameter  𝑠𝑠 will allow us 

to find the value 𝑠𝑠∗, which will correspond to  
𝑃𝑃𝑖𝑖+1 = 𝑓𝑓𝑖𝑖+1(𝑠𝑠∗). 
𝑢⃗𝑢 𝑖𝑖 = 𝑃𝑃𝑖𝑖+1−𝑃𝑃𝑖𝑖

|𝑃𝑃𝑖𝑖+1−𝑃𝑃𝑖𝑖|
. 

The family of lines 𝑓𝑓𝑖𝑖(𝑠𝑠) can be lines of arbi-
trary configuration. 

 

Modification of the parallel approach method 
on the plane: the network 𝑓𝑓𝑖𝑖(𝑠𝑠), where 𝑠𝑠 is the arc 

length of the line, 𝑇𝑇𝑖𝑖 is the array of reference points 
of the target trajectory. The condition is fulfilled 
that the end of line 𝑓𝑓𝑖𝑖(𝑠𝑠) passes through point 𝑇𝑇𝑖𝑖, 

and point 𝑃𝑃𝑖𝑖 is incident to line 𝑓𝑓𝑖𝑖(𝑠𝑠). It is used as a 
template. Solving the equation (𝑓𝑓𝑖𝑖+1(𝑠𝑠) − 𝑃𝑃𝑖𝑖)2 =
(𝑉𝑉𝑃𝑃 ∙ ∆𝑡𝑡)2 with respect to the parameter s will find 

the value of 𝑠𝑠∗, which will correspond to 
 𝑃𝑃𝑖𝑖+1 = 𝑓𝑓𝑖𝑖+1(𝑠𝑠∗). 
𝑢⃗𝑢 𝑖𝑖 = 𝑃𝑃𝑖𝑖+1−𝑃𝑃𝑖𝑖

|𝑃𝑃𝑖𝑖+1−𝑃𝑃𝑖𝑖|
. 

The family of lines 𝑓𝑓𝑖𝑖(𝑠𝑠) can be lines of arbi-
trary configuration. 

 

 
Table 1 does not reflect all methods of calculating control vectors. The implication is that 

this will be an open, replenishable library of functions. 
An example of application of matrix modeling to group pursuit. 
Consider the example of group pursuit shown in Fig. 3. 
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Fig. 3. A scheme of group pursuit of multiple targets. 

It is necessary to form matrices Ψ𝑖𝑖𝑖𝑖 , where 𝑖𝑖 = 1. .3, 𝑗𝑗 = 1. .2, corresponding to samples 
𝐴𝐴𝑘𝑘, 𝑘𝑘 = 1. .6 (Table 2). This is followed by circulation to find the maximum value of 𝑡𝑡𝑘𝑘 =
𝑀𝑀𝑀𝑀𝑀𝑀 {𝑡𝑡𝑖𝑖𝑖𝑖}. After calculating the attainment times, it is found that the longest attainment time 
has the chaser 𝑃𝑃1 catching the target 𝑇𝑇1from sample 𝐴𝐴2. 

Table 2. Samples corresponding to the distribution of pursuers by target. 

Pu
rs

ue
rs

  targets targets targets targets targets targets 
 1 2 1 2 1 2 1 2 1 2 1 2 

1 x  x  x   x  x  x 
2  x x   x x  x   x 
3  x  x x  x   x x  

Samples 𝐴𝐴1 𝐴𝐴2 𝐴𝐴3 𝐴𝐴4 𝐴𝐴5 𝐴𝐴6 
 
The situation in Fig. 3 shows all pursuers reach the target using the changed parallel ap-

proach method, which corresponds to row 8 of Table 1. 
The example in Fig. 3 shows a case where there was a calculation of simultaneous goal 

achievement. The curvature of the trajectory in the pursuit model specified in row 8 of Table 
1 must not be greater than a certain value. The initial radius of curvature of the trajectory 
increases in the model for pursuers 𝑃𝑃2 and 𝑃𝑃3 (Figure 3). 

In the sample 𝐴𝐴𝑘𝑘 the pursuer 𝑃𝑃𝑖𝑖  catches up with 𝑇𝑇𝑗𝑗. Then the primary estimation of the 
time of reaching 𝑡𝑡𝑖𝑖𝑖𝑖 takes place. The estimation of the time 𝑡𝑡𝑖𝑖𝑖𝑖 in the length's calculation of 
the length of the rectilinear segment to thein the arc's calculation length of the contiguous 
circle of acceptable radius. Then, the maximum value 𝑡𝑡𝑘𝑘 = 𝑀𝑀𝑀𝑀𝑀𝑀{𝑡𝑡𝑖𝑖𝑖𝑖} is chosen. The increase 
in time 𝑡𝑡𝑖𝑖𝑖𝑖 to the value 𝑡𝑡𝑘𝑘 is due to the increase in the pursuer 𝑃𝑃𝑖𝑖  of the radius of the conjugate 
circle from the value 𝑟𝑟𝑖𝑖 to the value 𝑟𝑟𝑖𝑖 + 𝛿𝛿𝑟𝑟𝑖𝑖. 

Figure 4 is supplemented with an animated image, which shows the process of group 
pursuit of a set of targets (based on the YouTube video @alexdubanov5999, Alexander 
Dubanov). 
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Fig. 4. Schemes of the phases of group pursuit: a - initial phase; b - final phase. 
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3 Research results 
The author created a program of group pursuit of several targets based on the results of the 
study. We got a certificate of software registration (Software Registration Certificate No. 
2021618920, Model of parallel convergence on the plane of a group of pursuers with 
simultaneous target attainment). 

4 Discussion and conclusion 
A party representing targets that sets itself the goal of not being reached can use modeling of 
the distribution matrix of pursuers on targets.  

The goal chaser distribution matrix will be generated at each point in time. Goals and 
pursuers can disappear, and new ones can appear. 

The method of forming a matrix of distribution of pursuers on targets can be in demand 
in the design of virtual reality systems for game tasks, in which the simulation of the process 
of group pursuit, escape, evasion will be performed.  

 
The author is grateful to Larisa Vasilievna Antonova, dean of the Institute of Mathematics and 
Informatics of D. Banzarov Buryat State University, for her help in working on the research projects. 
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