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Abstract. This study demonstrates the possibility of crop rotation selection 
based on the assessment of productivity and sustainability of crop 
production under different atmospheric moisture conditions. The study 
considers 8 crop rotations oriented to grain production. The data obtained in 
long-term field experiments in the forest-steppe of the Novosibirsk region 
were used. As a result of the implementation of the decision tree (CART) 
and the use of ensemble algorithm (Random Forest) the construction of a 
model characterized by a fairly high predictive ability was performed. 
Standardized Precipitation Index was chosen as the main predictor 
characterizing atmospheric moistening in different periods of vegetation. 
The most stable from the point of view of stability of crop yield – grain-
fallow with winter rye, grain-fallow with legumes (vetch-oats), in conditions 
of manifestation of atmospheric drought of different severity were selected. 
The possibility of using machine learning methods (CART, Random Forest) 
as effective tools in the selection of crop rotation for sustainable grain 
production without the use of chemicalization in soil and climatic conditions 
of Siberia, as well as the assessment of possible risks in the transition of crop 
production to organic technologies were scientifically substantiated. 

1 Introduction 
Crop rotations play a key role in the rational organization of land use and design of farming 
systems. A well-designed and consistently implemented crop rotation not only prevents soil 
degradation but also reduces crop contamination levels and the spread of pests. This typically 
affects crop yields and the quality of products [1, 2, 3]. 

Economic-mathematical modeling has been and remains the primary tool for selecting 
cultivated crops and designing crop rotations [4, 5, 6]. However, traditional approaches are 
based on static concepts, employing single-criterion optimization procedures instead of 
multi-criteria evaluations. Uncertainty in information is typically classified as random factors 
or probabilities, remaining static irrespective of the dynamic evolution of various constraints. 

 
* Corresponding author: kiri-maksimovi@mail.ru 

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons 
Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/).

E3S Web of Conferences 486, 01028 (2024) https://doi.org/10.1051/e3sconf/202448601028
AGRITECH-IX 2023



With advancements in computational technology, information-reference and information-
computational systems have gained widespread use, applied in tasks like land quality 
assessment, fertilizer dosage calculations, and field technical passport management [7]. 

In recent years, attempts have been made to incorporate artificial intelligence methods in 
solving crop rotation design problems. For instance, [8] conceptualized the subject area of 
"crop selection and placement" and developed a model with ontological entities represented 
in UML format. The model describes five classes – "Crop", "Crop Biology", "Growth and 
Development Conditions", "Management Actions", and "Placement" – with characteristics 
that influence target indicators. An algorithm based on a control matrix, where experts assign 
scores from 0 to 1 to seven "Management Actions" factors, assuming that these actions affect 
22 factors in the other three classes: "Crop Biology", "Growth and Development Conditions", 
and "Placement". 

Various approaches to crop rotation planning are discussed in the international literature. 
Or instance, models like FruchtFolge [9] and the Farm Planning Model [10] utilize linear 
programming techniques. These models establish constraints and goals as formulas that are 
maximized or minimized using a mixed-integer linear programming solver (MILP). In [11], 
a knowledge-based and intelligent systems approach is proposed, using five different 
evolutionary algorithms to create a multi-objective crop rotation plan. Researchers also 
highlight that traditional data processing methods cannot meet the ever-growing needs of 
intelligent agriculture, posing a significant obstacle to extracting valuable information from 
field data [12]. To address this, machine learning (ML), a subset of artificial intelligence, is 
employed, leveraging the exponential growth in computational power [13]. 

One widely used ML algorithm is Decision Trees (DT), which are classification or 
regression models formulated in a tree-like architecture [14]. DT organizes datasets into 
progressively smaller homogeneous subsets, creating a connected tree-like graph. Each 
internal node represents a different pairwise comparison on a chosen attribute, while each 
branch represents the result of that comparison. The terminal nodes hold the final decisions 
or predictions made following the path from the root to the leaf (expressed as rules). The 
most common learning algorithm in this category is Classification and Regression Tree 
(CART) [15, 16]. 

The objective of this study is to construct decision trees for crop rotation selection in 
organic agriculture, based on the usage of long-term field experiment data. 

2 Materials and methods 
The study was conducted using data from long-term field experiments carried out in the 
forest-steppe region of Priobye (Ob River region), Novosibirsk Oblast, by the Siberian 
Research Institute of Agriculture and Agrochemistry from 1999 to 2019. Eight crop rotations 
oriented towards grain production were examined: Grain (0 fallow), Grain-fallow (25% 
fallow), Grain-fallow (25% fallow) with winter rye, Grain-grass with winter rye and melilot 
(for herbage or cover crop), Grain with legumes (vetch-oats), Grain with oilseeds (rapeseed), 
Grain-grass (clover), and Grain-grass (vetch-oats (herbage)). 

All crop rotations were implemented in both time and space, repeated three times, on 
plots measuring 475 m2. In total, there were 104 experimental fields for the crop rotations. 
Time series of crop rotation productivity expressed in dt g.e./ha of crop rotation area were 
used in the calculations. Data were obtained under conditions without the application of 
intensification measures (fertilizers, pesticides) to better assess the variability of crop rotation 
productivity in organic farming. The actual crop yield of the studied crops was converted to 
grain equivalents (g.e.) using crop production conversion coefficients. 

Given the characteristics and distribution nature of the original data, including non-
compliance with the normal distribution model, a relatively small sample size, and the 

2

E3S Web of Conferences 486, 01028 (2024) https://doi.org/10.1051/e3sconf/202448601028
AGRITECH-IX 2023



presence of discrete and continuous factors with complex nonlinear correlations, appropriate 
statistical methods were chosen. The normality of data was assessed using the Shapiro-Wilk 
and Lilliefors tests. Due to the deviation from normal distribution (Shapiro-Wilk and 
Lilliefors tests, p < 0.05), the Poisson log model was utilized [17, 18]. 

The agrometeorological resources during the experiment years were considered using the 
Standardized Precipitation Index (SPI) [19]. SPI was calculated based on time series data 
from meteorological observations in Novosibirsk city, sourced from the website 
"http://www.pogodaiklimat.ru". The SPI calculations were performed using the open-source 
software Drought Indices Calculator (DrinC) (https://drought-software.com). 

The relationship between SPI and crop rotation productivity was assessed using the 
Spearman rank correlation coefficient, known for its robustness against outliers and non-
normal data distribution. The association between crop rotation type and productivity was 
evaluated using the Kruskal-Wallis test. Nonlinear relationships between variables were 
modeled using polynomial regression (Equation 1): 

y = β₀ + β₁x + β₂x² + ... + βₙxⁿ + ε,        (1) 

where y is the dependent variable, x is the independent variable, β₀, β₁, β₂, ..., βₙ are the 
coefficients of the model, n is the degree of the polynomial, and ε is the random error. 

Variation in crop rotation productivity and yield stability was evaluated by calculating 
the coefficient of variation for each crop rotation, providing a measure of relative data 
variation. A lower coefficient of variation indicates greater crop rotation stability. Graphical 
analysis with time series plots for each crop rotation type, visual assessment of productivity 
stability, and trend analysis were also employed. 

To create productivity models for crop rotations, the CART algorithm was utilized with 
the author's software Crop Yield Analysis & Forecast (CYAF) [20, 21]. Mathematical models 
using decision trees were built, where each node represents data division based on specific 
predictors. The hierarchical structure of the obtained decision tree was visualized, presenting 
the decision-making branches and division conditions clearly. Additionally, the Random 
Forest (RF) model, an ensemble of multiple decision trees, was applied. Tree complexity 
calculations, accuracy evaluation, and tree optimization were performed using cross-
validation. Additional computations and graphical visualizations were conducted using the 
R programming language and R-Studio integrated development environment for statistical 
data processing and graphics. 

3 Results and discussion 
The obtained results confirm the hypothesis that the maximum productivity under different 
atmospheric moisture conditions is characteristic of grain-legume and various types of grain-
grass crop rotations. The average multi-year productivity of such crop rotations ranged from 
20 to 30 dt g.e./ha. For grain-grass rotations (grain-grass with clover, grain-grass with 
legumes), it was slightly higher, ranging from 23 to 30 dt g.e./ha (Figure 1). 

As a result of data analysis, a statistically significant relationship between crop rotation 
productivity and its type was revealed (Kruskal-Wallis test, p < 0.0001). 
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Fig. 1. Boxplot diagram of crop rotation productivity data. 

The least variation in crop rotation productivity over time was observed for grain (0 
fallow), grain-fallow (25% fallow), grain-fallow (25% fallow) with winter rye, and grain with 
legumes (Figure 1). In a significantly drought year (1999; SPI = -1.9), the productivity of 
these crop rotations ranged from 18.0 to 20.4 dt g.e./ha of crop rotation area, which was, on 
average, 2.4 dt g.e./ha higher than in other crop rotations. In an extremely drought year (2012; 
SPI = -2.9), the productivity in these rotations ranged from 7.7 to 11.3 dt g.e./ha of crop 
rotation area, which was, on average, 1.4 dt g.e./ha higher than in other types of crop 
rotations. The highest productivity values were observed in years with moderate moisture 
conditions (2018, SPI = 1.01) and within normal parameters in 2017 (SPI = 0.8) for grain-
grass rotations with clover (30.2-32.1 dt g.e./ha) and grain-grass rotations for green mass or 
herbage (31-31.9 dt g.e./ha). 

The greatest variation in multi-year crop rotation productivity was observed for all grain-
grass crop rotations (Table 1). 

Table 1. Assessment of variation in crop rotation productivity. 

Crop rotation Variation 
coefficient SD 

Grain (0 fallow) 29.0 5.27 

Grain with legumes (vetch-oats) 30.5 6.16 

Grain with oilseeds (rapeseed) 31.5 4.62 

Grain-fallow (25% fallow) with 
winter rye 22.5 4.52 

Grain-fallow (25% fallow) 30.3 5.22 

Grain-grass (vetch-oats for herbage) 33.6 7.28 

Grain-grass (clover) 34.6 9.42 

Grain-grass with winter rye and 
melilot 30.9 7.95 

 
The relatively low variation in crop rotation productivity was common for grain (0 

fallow), grain-fallow (25% fallow), grain-fallow (25% fallow) with winter rye, and grain with 
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legumes. A lower standard deviation (SD) indicates a smaller difference between 
productivity values in different years and, therefore, a more stable crop rotation productivity. 
In our case, the aforementioned crop rotations also exhibited relatively low standard 
deviation values. 

Based on the results of the graphical analysis of time series (Figure 2), the least variability 
and a more stable pattern of productivity data representation were characteristic of grain (0 
fallow), grain-fallow (25% fallow), grain-fallow (25% fallow) with winter rye, and grain with 
legumes crop rotations, indicating their relative stability in terms of actual productivity 
indicators. 

 

 
Fig. 2. Graphical analysis of crop rotation productivity variation. 

More stable trend patterns were characteristic of grain-fallow (25% fallow), grain-fallow 
(25% fallow) with winter rye, and grain with legumes crop rotations, which also confirms 
the aforementioned assumption about the stability of these crop rotations. 

In earlier studies [22-24] evaluating the resistance of crop rotations to the most harmful 
biotic stressors – weeds, it was shown that grain-fallow crop rotations also reacted to 
increased weed infestation with a lesser decline in crop rotation productivity. Crop rotations 
with legumes and cabbage were in the second group in terms of resistance, with productivity 
decline depending on the increase in weed biomass ranging from 0.46 to 0.58 dt g.e./ha. It 
should also be noted that under high crop infestation, these rotations coped more successfully 
with the weed component due to increased crop competitiveness. The grain crop rotation (0 
fallow) was the least balanced and characterized by the highest productivity losses. Without 
the application of mineral fertilizers, grain-fallow crop rotations were preferred [22]. 
Regarding grain yield per hectare of crop rotation area without the application of fertilizers 
and pesticides, the most productive were grain-fallow crop rotations with winter rye (24.6 
dt/ha) and grain with legumes (24.4 dt/ha) [22-24]. The advantages of grain-fallow crop 
rotations in increasing the productivity of arable land and the technological properties of 
grain crops in different agricultural systems, through the optimization of black soil fertility 
elements and the phytosanitary state of agrophytocenosis, have been noted by many authors 
[25-30]. 

Using polynomial regression and actual data on crop rotation productivity (Figure 3), the 
relationship and variation of indicators were studied when different values of atmospheric 
moisture were alternated, expressed through the Standardized Precipitation Index (SPI) 
during various vegetation periods. The graphs show that the influence of SPI on the target 
variable is not linear but rather has a more complex form, confirming the use of polynomial 
regression. By analyzing polynomials and cross-validation, the most suitable polynomial 
degrees for each SPI were determined: SPI May – 13, SPI June – 13, SPI July – 12, SPI 
Vegetation (May-July) – 12. For each polynomial degree, the Root Mean Square Error 
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(RMSE) was calculated, which is a measure of model accuracy. This allowed the selection 
of the most accurate models that take into account the nonlinear relationship between SPI 
and the target variable. 

 

 
Fig. 3. Scatter plot of variables containing crop rotation productivity values and SPI index over the 
vegetation period with an overlaid regression spline. 

Using the Spearman rank correlation coefficient, a relatively high statistical significance 
of the influence of SPI during specific vegetation periods on crop rotation productivity was 
found (SPI May – 0.47, p < 0.001, and SPI May-July – 0.43, p < 0.001). This relationship 
was utilized in constructing a decision tree (CART) (Figure 4). 

 

 
Fig. 4. Decision tree visualization for selecting crop rotation and predicting productivity values (At 
the top is the tree node number. This node inquires whether the specified partitioning condition 
expression is true. If yes, the tree descends to the left child node of the root, otherwise it descends to 
the right child node. Yield of cwt of g.e./ha from the rotational area shown below). 

6

E3S Web of Conferences 486, 01028 (2024) https://doi.org/10.1051/e3sconf/202448601028
AGRITECH-IX 2023



In the gradient of atmospheric moisture during different vegetation periods, a set of 
logical rules allows identifying crop rotations with optimal potential productivity parameters. 

For example: 
 SPI May-July < -2.5 (extremely dry conditions) – low productivity for all crop 

rotations. 
 SPI May-July > -0.71(range of average long-term moisture conditions) – high 

productivity is characteristic of grass-grain (clover) and grass-grain (herbage or 
cover crop) rotations. 

 SPI May-July > -0.71; -0.35 <= SPI May < 0.29 (range of average long-term 
moisture conditions) – maximum productivity will be characteristic of grain-fallow 
(25% fallow) with winter wheat and majority types of grass-based crop rotations. 

Variations in choosing crop rotations are possible depending on their potential stability 
under evolving moisture conditions and the level of agricultural practices in specific farms. 

The constructed model based on a simple decision tree demonstrated relatively high 
predictive capability (R2 = 0.56, RMSE = 6.84, MAE = 4.55). However, to increase the 
model's accuracy, an ensemble approach was applied by building multiple decision trees 
(Random Forest algorithm) based on the same predictors. This led to an improved model 
accuracy. The Random Forest algorithm showed (Figure 5) higher accuracy in estimating 
potential productivity depending on varying conditions during different vegetation periods. 

 

 
Fig. 5. Results of modeling crop rotation productivity values using the Random Forest method. 

Approximately 62.77% of the variations in the target variable (crop rotation productivity) 
can be explained by the Random Forest model. The Root Mean Square Error (RMSE) is 6.44, 
the Mean Absolute Error (MAE) is 3.99, and the coefficient of determination (R2) is 0.60. 

Based on the developed model, it becomes possible to select crop rotations under 
conditions of alternating different categories of atmospheric moisture and assess the 
preliminary productivity of their types. The set of logical rules allows evaluating stable or 
most productive crop rotation types under different moisture variations (Figure 4). This 
model will enable more efficient planning of technological resources according to the 
prevailing moisture conditions during various vegetation periods and can become an integral 
part of decision support systems [31-33]. 

4 Conclusion 
Using machine learning methods (Random Forest and CART algorithms), an attempt has 
been made to address one of the pressing challenges in agriculture – the selection of crop 
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rotations for sustainable grain production in the Siberian region. The main predictor chosen 
for this study is the atmospheric moisture index expressed as the Standardized Precipitation 
Index (SPI) during various vegetation periods. The effectiveness of employing an ensemble 
approach was demonstrated, highlighting the model's highest forecasting capabilities. As a 
result of this work, a model with sufficiently high predictive ability (R2 = 0.60, RMSE = 6.44, 
MAE = 3.99) has been developed for selecting crop rotation types based on their stable 
productivity over time. Among the most suitable crop rotations identified are grain-fallow 
(25% fallow), grain-fallow with winter wheat, and grain-legume rotations. 

 
This research was carried out with financial support from the grant of the President of the Russian 
Federation for the state support of leading scientific schools, grant number NSH-1129.2022.2. 
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